Math, asked by BloomingBud, 1 year ago

If x² + 1/x² = 7 , find the value of x³ + 1/x³

Answers

Answered by siddhartharao77
99

Answer:

18

Step-by-step explanation:

Given Equation is x² + (1/x²) = 7.

It can be written as,

⇒ x² + (1/x²) = 9 - 2

⇒ x² + (1/x²) + 2 = 9

⇒ (x + 1/x)² = 9

⇒ x + 1/x = 3.

On cubing both sides, we get

⇒ (x + 1/x)³ = (3)³

⇒ x³ + 1/x³ + 3(x + 1/x) = 27

⇒ x³ + 1/x³ + 3(3) = 27

⇒ x³ + 1/x³ + 9 = 27

x³ + 1/x³ = 18.

Hope it helps!


BloomingBud: Thank you so much bro
siddhartharao77: Welcome sis!
Answered by BrainlyIAS
25

Question :

If  \sf \red{x^2 + \dfrac{1}{x^2}=7} , find the value of  \sf \red{x^3 + \dfrac{1}{x^3}}

Solution :

\sf x^2+\dfrac{1}{x^2}=7

\longrightarrow\ \sf x^2+\dfrac{1}{x^2}=9-2

\longrightarrow\ \sf x^2+\dfrac{1}{x^2}+2=9

\longrightarrow\ \sf x^2+\dfrac{1}{x^2}+2.x.\dfrac{1}{x}=9

\bullet\ \; \sf \orange{(A+B)^2=A^2+B^2+2AB}

\longrightarrow\ \sf \left( x+ \dfrac{1}{x} \right)^2=9

\longrightarrow\ \sf \textsf{\textbf{x}}\ \textsf{\textbf{+}}\ \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{x}}}\ \textsf{\textbf{=}}\ \textsf{\textbf{3}}  ∀ x ∈ N

Cubing on both sides ,

\longrightarrow \sf \left( x+ \dfrac{1}{x} \right)^3 =3^3

\bullet\ \; \sf \blue{(A+B)^3=A^3+B^3+3AB(A+B)}

\longrightarrow \sf  x^3+\dfrac{1}{x^3} + 3.x.\dfrac{1}{x} \left( \textsf{\textbf{x}}\ \textsf{\textbf{+}}\ \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{x}}} \right) = 27

\longrightarrow \sf  x^3+\dfrac{1}{x^3} + 3(3)= 27

\longrightarrow \sf  x^3+\dfrac{1}{x^3}= 27-9

\longrightarrow \sf  \pink{\textsf{\textbf{x}}^{\textsf{\textbf{3}}}\ \textsf{\textbf{+}}\ \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{x}}^{\textsf{\textbf{3}}}}\ \textsf{\textbf{=}}\ \textsf{\textbf{18}}}

★ ═════════════════════ ★

Similar questions