Math, asked by nehathdpal, 2 months ago

if x²+1÷x²=7,then find the value of x+1÷x​

Answers

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{\tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }   = 7}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{x + \dfrac{1}{x} }  \end{cases}\end{gathered}\end{gathered}

\large\sf{\underbrace{\underline{Formula\ to\ be\ used:-}}}

\tt\implies \: \boxed{ \red{ \bf \:  {x}^{2}  +  {y}^{2}  + 2xy =  {(x + y)}^{2} }}

\large\underline\purple{\bold{Solution :-  }}

\sf{\underbrace{\underline{ \green{ \bf \: According\ to\ the\ question:-}}}}

: \implies \tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }   = 7

★ On adding 2 on both sides, we get

: \implies \tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2 = 7 + 2

: \implies \tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}  = 9

 : \implies \tt \:  {(x + \dfrac{1}{x}) }^{2} = 9

 : \implies \tt \: x + \dfrac{1}{x}  =  \pm \: 3

Similar questions
English, 2 months ago