if x²+1/x²=7, then find the value of x³+1/x³
a. 27
b. 9
c. 18
d. 36
Answers
EXPLANATION.
⇒ x² + 1/x² = 7.
As we know that,
We can write equation as,
⇒ (x + 1/x)² = x² + 1/x² + 2(x)(1/x).
⇒ (x + 1/x)² = x² + 1/x² + 2.
Put the values of x² + 1/x² = 7 in the equation, we get.
⇒ (x + 1/x)² = 7 + 2.
⇒ (x + 1/x)² = 9.
⇒ (x + 1/x) = √9.
⇒ (x + 1/x) = 3.
Cube on both sides of the equation, we get.
⇒ (x + 1/x)³ = (3)³.
As we know that,
Formula of :
⇒ (a + b)³ = a³ + 3a²b + 3ab² + b³.
Using this formula in the equation, we get.
⇒ (x)³ + 3(x)²(1/x) + 3(x)(1/x)² + (1/x)³ = 27.
⇒ x³ + 3x + 3/x + 1/x³ = 27.
⇒ x³ + 1/x³ + 3x + 3/x = 27.
⇒ x³ + 1/x³ + 3(x + 1/x) = 27.
Put the value of x + 1/x = 3 in the equation, we get.
⇒ x³ + 1/x³ + 3(3) = 27.
⇒ x³ + 1/x³ + 9 = 27.
⇒ x³ + 1/x³ = 27 - 9.
⇒ x³ + 1/x³ = 18.
Option [C] is correct answer.
____________________________
★SOLUTION:-
(x + 1/x)2
x2 + 1/x2 + 2
(x + 1/x)2 = 9
x + 1/x = 3
Now,
(x + 1/x)3
x3 + 1/x3 + 3(x + 1/x)
27 = x3 + 1/x3 + 9
or,
x3 + 1/x3
27-9 = 18