Math, asked by Prachi0514, 10 months ago

If x2+1/x2=70 , find x-1/x

Answers

Answered by Anonymous
14

Answer:

2√17

Step-by-step explanation:

Given : {\sf{\ \ x^2 + {\dfrac{1}{x^2}} = 70}}

To Find : {\sf{\ \ x - {\dfrac{1}{x}} }}

Solution :

Squaring of {\sf{ x - {\dfrac{1}{x}} }} , we get

\Rightarrow{\sf{ \left( x - {\dfrac{1}{x}} \right) ^2}}

{\boxed{\sf{\red{Identity \ : \ (a - b)^2 = a^2 + b^2 - 2ab}}}}

{\sf{\red{Here, \ a = x, \ b = {\dfrac{1}{x}} }}}

\Rightarrow{\sf{(x)^2 + \left( {\dfrac{1}{x}} \right) ^2 - 2.x. {\dfrac{1}{x}} }}

\Rightarrow{\sf{x^2 + {\dfrac{1}{x^2}} - 2. {\cancel{x}} . {\dfrac{1}{ {\cancel{x}} }} }}

\Rightarrow{\sf{x^2 + {\dfrac{1}{x^2}} - 2 }}

Putting known value, we get

\Rightarrow{\sf{70 - 2}}

\Rightarrow{\sf{68}}

Now, we have

{\sf{ \left( x - {\dfrac{1}{x}} \right) ^2 = 68}}

\Rightarrow{\sf{ x - {\dfrac{1}{x}} = {\sqrt{68}} }}

\Rightarrow{\sf{x - {\dfrac{1}{x}} = {\sqrt{2 \times 2 \times 17}} }}

\Rightarrow{\boxed{\sf{\green{x - {\dfrac{1}{x}} = 2 {\sqrt{17}} }}}}

Answered by Equestriadash
15

\bf Given:\ \sf x^2\ +\ \dfrac{1}{x^2}\ =\ 70.\\\\\\\bf To\ find:\ \sf x\ -\ \dfrac{1}{x}.\\\\\\\bf Answer:\\\\\\\sf We\ know\ that\ (a\ -\ b)^2\ =\ a^2\ -\ 2ab\ +\ b^2.\\\\\\Supposing\ from\ the\ question,\ a\ =\ x\ and\ b\ =\ \dfrac{1}{x}.\\\\\\\bigg(x\ -\ \dfrac{1}{x}\bigg)^2\ =\ (x)^2\ +\ \bigg(\dfrac{1}{x}\bigg)^2\ -\ 2\ \times\ x\ \times\ \dfrac{1}{x}\\\\\\\bigg(x\ -\ \dfrac{1}{x}\bigg)^2\ =\ 70\ -\ 2\ \ \ \ \ \ \ \ \bigg[Given\ that\ x^2\ +\ \dfrac{1}{x^2}\ =\ 70.\bigg]\\\\\\

\sf \bigg(x\ -\ \dfrac{1}{x}\bigg)^2\ =\ 68\\\\\\x\ -\ \dfrac{1}{x}\ =\ \sqrt{68}

Similar questions