Math, asked by kavya1011, 1 year ago

If x²+1/x²=83,find value of x³-1/x³

Answers

Answered by gangwarakash999
10

 =  {x}^{2}  + 1 \div  {x}^{2}  = 83 \\  =   {x}^{2}  + 1 \div  {x}^{2}  - 2 + 2 ( = 0) = 83 \\  = ( {x  -  1 \div x})^{2}  = 83 - 2 = 81 \\  = x  - 1 \div x = 9 \\  = taking \: cube \: in \: both \: sides \\  =  {x}^{3}  - 1 \div  {x}^{3}  - 3(x   - 1 \div x) = 729 \\  =  {x}^{3}  - 1 \div   {x}^{3} - 3(9) = 729 \\  = {x}^{3}  - 1 \div   {x}^{3}  = 729 - 27 \\  =( {x}^{3}  - 1 \div   {x}^{3} ) = 702 \: ans
Answered by Anonymous
32

Answer :

We know that

 \\  \qquad \sf \bigg(x -  \frac{1}{x}  \bigg){}^{2}   = x {}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \\  \\  \\  \implies \sf \bigg(x -  \frac{1}{x}  \bigg) {}^{2}  = 83 - 2 \qquad \bigg \{putting \:  {x}^{2}  +  \frac{1}{ {x}^{2}  }   = 83\bigg \} \\  \\  \\  \implies \sf \bigg(x -  \frac{1}{x}  \bigg) {}^{2}  = 81 \\  \\  \\  \implies \sf \bigg(x -  \frac{1}{x}  \bigg) {}^{2}  =  {9}^{2}  \\  \\  \\  \implies \sf x -  \frac{1}{x}  = 9 \\  \\  \\  \implies \sf \bigg(x -  \frac{1}{x}  \bigg) {}^{3}  =  {9}^{3}  \\  \\  \\  \implies \sf {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3 \:  \bigg(x -  \frac{1}{x}  \bigg) = 729 \\  \\  \\  \implies \sf {x}^{3}  -  \dfrac{1}{ {x}^{3} }  - 3 \times 9 = 729 \\  \\  \\  \implies \sf {x}^{3}  -  \frac{1}{ {x}^{3} }  = 729 + 27 \\  \\  \\  \implies \sf \blue{ {x}^{3}  -  \frac{1}{ {x}^{3} } = 756} \\  \\

Similar questions