Math, asked by hasanmustafasay, 1 year ago

if x2 + 1/x2=98 find the value of x3+1/x3

Answers

Answered by atul103
121
hey! bro..
#your Ans
____________


(x  + \frac{1}{x}  {)}^{2} =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  \\ (x +  \frac{1}{x}  {)}^{2}  = 98 + 2 \\  \\ (x +  \frac{1}{x}  {)}^{2}  = 100 \\  \\  x +  \frac{1}{x}  =  \sqrt{100}  \\  \\  x +  \frac{1}{x}  = 10 \\  \\ now \\  \\ (x +  \frac{1}{x}  {)}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x} ) \\  \\ putting \: value \\  \\ (10 {)}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 10 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 1000 - 30 \\  \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 970 \: ans

✌☺:-)

hasanmustafasay: Ur right but late Sorry
Answered by erinna
55

Given:

x^2+\dfrac{1}{x^2}=98

To find:

The value of x^3+\dfrac{1}{x^3}

Solution:

Formulae used:

(a+b)^2=a^2+2ab+b^2

(a+b)^3=a^3+b^3+3ab(a+b)

We know that,

(x+\dfrac{1}{x})^2=x^2+\dfrac{1}{x^2}+2\times x\times \dfrac{1}{x}

(x+\dfrac{1}{x})^2=98+2(1)           [\because x^2+\dfrac{1}{x^2}=98]

(x+\dfrac{1}{x})^2=98+2

(x+\dfrac{1}{x})^2=100

Taking square root on both sides, we get

x+\dfrac{1}{x}=10         ...(i)

Now,

(x+\dfrac{1}{x})^3=x^3+\dfrac{1}{x^3}+3\times x\times \dfrac{1}{x}\left(x+\dfrac{1}{x}\right)

(10)^3=x^3+\dfrac{1}{x^3}+3\left(10\right)        [Using (i)]

1000=x^3+\dfrac{1}{x^3}+30

Subtract 30 form both sides.

1000-30=x^3+\dfrac{1}{x^3}

970=x^3+\dfrac{1}{x^3}

Therefore, the value of x^3+\dfrac{1}{x^3} is 970.

Similar questions