if x²+1/x²=98,then find the value of [x³+1/x³]
Answers
Answered by
6
Answer :
x³ + 1/x³ = 970
Solution :
- Given : x² + 1/x² = 98
- To find : x³ + 1/x³ = ?
We know that ,
(A + B)² = A² + B² + 2AB
If A = x and B = 1/x , then
=> (x + 1/x)² = x² + (1/x)² + 2•x•(1/x)
=> (x + 1/x)² = x² + 1/x² + 2
=> (x + 1/x)² = 98 + 2
=> (x + 1/x)² = 100
=> x + 1/x = √100
=> x + 1/x = 10
Now ,
Cubing both the sides , we get ;
=> (x + 1/x)³ = 10³
=> x³ + (1/x)³ + 3•x•(1/x)•(x + 1/x) = 1000
=> x³ + 1/x³ + 3•1•10 = 1000
=> x³ + 1/x³ + 30 = 1000
=> x³ + 1/x³ = 1000 - 30
=> x³ + 1/x³ = 970
Hence ,
x³ + 1/x³ = 970
Similar questions