Math, asked by NikitaSingh10K, 8 hours ago

If x² + 2x + 5 is a factor of x⁴ + Px²+ Q, then the value of P + Q is equal to​

Answers

Answered by Salmonpanna2022
4

Step-by-step explanation:

Given: x^2 + 2x + 5 is a factor of x^4 + Px^2 + Q

x^2 + 2x + 5) x^4 + px^2 + q

                      x^4  + 2x^3 + 5x^2

                      ----------------------------

                             -2x^3 + (p - 5)x^2 + q

                             -2x^3 - 4x^2  - 10x

                      ---------------------------------------

    

                                        (p - 1)x^2 + 10x + q

                                        (p - 1)x^2 + (2p - 2)x + (5p - 5)

                      --------------------------------------------------------------

                                                        (10 - 2p + 2)x + (q-5p + 5)

(i)

= > 10 - 2p + 2 = 0

= > 12 - 2p = 0

= > p = 6.

(ii) q - 5p + 5 = 0

= > q - 5(6) + 5 = 0

= > q - 30 + 5 = 0

= > q - 25 = 0

= > q = 25.

Now,

p + q = 25 + 6

          = 31.

Hence, the value of P + Q is 31.

Hope this helps!

Answered by solveit27
1

Answer:

x^4+px^2+q.

=x^2(x^2+2x+5)-2x^3–5x^2+px^2+q.

=x^2(x^2+2x+5)-2x(x^2+2x+5)+4x^2+10x-5x^2+px^2+q.

=x^2(x^2+2x+5)-2x(x^2+2x+5)+(p-1). x^2+10x+q.

=x^2(x^2+2x+5)-2x(x^2+2x+5)+(p-1)(x^2+2x+5)-2(p-1).x-5(p-1)+10x+q.

=(x^2+2x+5) (x^2–2x+p) +2(6-p).x+5(1-p)+q.

=Divisor × Q +R.

Remainder = 0

2(6-p).x+(5–5p+q)= 0.

2(6-p)x+(5–5p+q)= 0.x + 0.

Equating the coeff. of x and constant term.

2(6-p) = 0 => p = 6 and

5–5p+q = 0.

5–5×6+q = 0.

q = 30–5 = 25

p = 6 and q = 25 , Answer.

and now the final: p+q = 25 + 6 = 31

HOPE IT HELPS!!

Step-by-step explanation:

Similar questions