Math, asked by unknown308, 16 hours ago

if x2-3x-1=0 find the value of x-1/x and x3-1/x3

Answers

Answered by amansharma264
13

EXPLANATION.

⇒ x² - 3x - 1 = 0.

As we know that,

We can write equation as,

⇒ x² - 1 = 3x.

⇒ (x² - 1)/x = 3.

⇒ (x²/x) - (1/x) = 3.

⇒ (x - 1/x) = 3.

Now, cubing on both sides of the equation, we get.

⇒ (x - 1/x)³ = (3)³.

⇒ x³ - 3(x²)(1/x) + 3(x)(1/x²) - 1/x³ = 27.

⇒ x³ - 3x + 3/x - 1/x³ = 27.

⇒ x³ - 1/x³ - 3(x - 1/x) = 27.

Put the values of (x - 1/x) = 3 in the equation, we get.

⇒ x³ - 1/x³ - 3(3) = 27.

⇒ x³ - 1/x³ - 9 = 27.

⇒ x³ - 1/x³ = 27 + 9.

⇒ x³ - 1/x³ = 36.

Values of :

(1) = (x - 1/x) = 3.

(2) = (x³ - 1/x³) = 36.

Answered by TrustedAnswerer19
133

Answer:

 \orange{ \boxed { \boxed{ \begin{array}{cc}\hookrightarrow \: \sf \: given \\  \\  \rm \:  {x}^{2}  - 3x - 1 = 0  \:  \:  \:  -  -  -eqn. (1)\\  \\  \blue{ \underline{ \sf \: we \: have \: to \: find  \: the \: value \: of : }} \\  \\ (a) \:  \:  \rm \: x  -   \frac{1}{x}   \\  \\  \rm \: (b) \:  \:  \:  {x}^{3}  -  \frac{1}{ {x}^{3} } \end{array}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \underline{ \sf \: solution}}

 \pink{ \boxed{ \boxed{ \begin{array}{cc} (a) \\  \\  \sf \: from \:  \: eqn.(1) =  >  \\  \\  \rm \:  {x}^{2}  - 3x - 1 = 0 \\  \\  \rm \implies \: {x}^{2}  - 1 = 3x \\  \\ \rm \implies \: \frac{ {x}^{2}  - 1}{x}   =  \frac{3x}{x} \\  \\ \rm \implies \:  \frac{ {x}^{2} }{x}  -  \frac{1}{x}   = 3 \\  \\ \rm \implies \:x  -  \frac{1}{x} = 3 \\  \\ \blue{ \boxed{  \rm \therefore \: x -  \frac{1}{x}  = 3}}  \:  \:  \:  -  -  -eqn. (2)\\  \\  \end{array}}}}

\orange{ \boxed{\boxed{\begin{array}{cc}(b) \\  \\ \rm  \: we \: know \: that :  \\  \\   \boxed{\sf \:  {a}^{3}  -  {b}^{3}  = ( {a - b)}^{3}  + 3ab(a - b)} \\  \\  \bf \: now \\  \\   \small{\rm \:  {x}^{3}  -  \frac{1}{ {x}^{3} }  = ( {x -  \frac{1}{x} })^{3} + 3 \times x \times  \frac{1}{x}  \times (x -  \frac{1}{x} )} \\  \\  \rm =   {3}^{3}  + 3 \times 3 \:  \:   \red{\{ \sf \: from \: eqn.(2) \}} \\  \\  \rm = 27 + 9 \\  \\  = 36 \\  \\  \blue{ \boxed{ \rm \therefore \:  {x}^{3}  -  \frac{1}{ {x}^{3} } = 36}}  \\  \\ \end{array}}}}</p><p>

Similar questions