Social Sciences, asked by Anonymous, 6 months ago

If x2 – 3x + 2 divides x3 – 6x2 + ax + b exactly, then find the value of ‘a’ and ‘b’​

Answers

Answered by Anonymous
7

Answer:

Find the roots of :-

                                x² - 3x + 2

then place these values in the second polynomial ,you will get two equation ,solve them for calculating a and b.

         x² - 3x + 2 = 0

         x² - 2x - x + 2 = 0

         x ( x-2 ) - 1 ( x-2 ) = 0

         (x-2) (x-1) = 0

         x - 2 = 0

         x = 2

         x - 1 = 0

         x = 1

__________________

Put x = 2

       x³ - 6x² + ax + b = 0

       8 - 6(4) + 2a + b = 0

      8 - 24 + 2a + b = 0

        2a + b = 16

________________________

Put x = 1

        x³ - 6x² + ax + b + 0

         1 - 6 + a + b = 0

               a + b = 5

_______________________

Subtract both the equations : -

          2a - a = 16 - 5

               a = 11

              a + b = 5

            11 + b = 5

             b = 5 - 11

               b = -6

kaisi hai ?  

Answered by sara210506
1

Answer:

The given polynomial is P(x)=2x

3

+3x

2

+ax+b

It is also given that if P(x) is divided by (x−2) then it will leave the remainder 2 and if divided by (x+2) then the remainder will be −2 which means that P(2)=2 and P(−2)=−2.

Let us first substitute P(2)=2 in P(x)=2x

3

+3x

2

+ax+b as shown below:

P(x)=2x

3

+3x

2

+ax+b

⇒P(2)=2(2)

3

+3(2)

2

+(a×2)+b

⇒2=(2×8)+(3×4)+2a+b

⇒2=16+12+2a+b

⇒2=28+2a+b

⇒2a+b=2−28

⇒2a+b=−26.........(1)

Now, substitute P(−2)=−2 in P(x)=2x

3

+3x

2

+ax+b as shown below:

P(x)=2x

3

+3x

2

+ax+b

⇒P(−2)=2(−2)

3

+3(−2)

2

+(a×−2)+b

⇒−2=(2×−8)+(3×4)−2a+b

⇒−2=−16+12−2a+b

⇒−2=−4−2a+b

⇒−2a+b=−2+4

⇒−2a+b=2.........(2)

Now adding the equations 1 and 2, we get

(2a−2a)+(b+b)=−26+2

⇒2b=−24

⇒b=−

2

24

⇒b=−12

Now substitute the value of b in equation 2:

−2a+(−12)=2

⇒−2a−12=2

⇒−2a=2+12

⇒−2a=14

⇒a=−

2

14

⇒a=−7

Hence a=−7 and b=−12

Similar questions