Math, asked by vedansh7922, 9 months ago

If x2 – 3x + 2 is a factor of x^4-ax² + b then value of a, b one
(a)a=5,b = 4
(b) a = 5,6 = -4
(c) a = -5,6 = 4
(d) a=-5,b=4

Answers

Answered by Anonymous
7

Answer:

\sf{(a) \ a=5, \ b=4}

\sf{Is \ the \ correct \ option.}

Given:

  • x²-3x+2 is a factor of p(x)x⁴-ax²+b

To find:

  • The value of a and b.

Solution:

\sf{Factorising \ polynomial \ x^{2}-3x+2}

\sf{\leadsto{x^{2}-3x+2}}

\sf{\leadsto{x^{2}-x-2x+2}}

\sf{\leadsto{x(x-1)-2(x-1)}}

\sf{\leadsto{(x-1)(x-2)}}

\sf{Hence, \ we \ can \ say \ (x-1) \ as \ well \ as}

\sf{(x-2) \ are \ factors \ of \ x^{4}-ax^{2}+b}

\sf{By \ Remainder \ theorem \ we \ get,}

\sf{p(1)=0 \ also \ p(2)=0}

\sf{p(1)=1^{4}-a(1)^{2}+b}

\sf{\therefore{1-a+b=0}}

\sf{\therefore{-a+b=-1...(1)}}

\sf{Also,}

\sf{p(2)=2^{4}-a(2)^{2}+b}

\sf{\therefore{16-4a+b=0}}

\sf{\therefore{-4a+b=-16...(2)}}

\sf{Subtracting \ equation (2) \ from \ equation (1)}

\sf{-a+b=-1}

\sf{-}

\sf{-4a+b=-16}

_________________

\sf{3a=15}

\sf{\therefore{a=\dfrac{15}{3}}}

\boxed{\sf{\therefore{a=5}}}

\sf{Substitute \ a=5 \ in \ equation (1) \ we \ get}

\sf{-5+b=-1}

\sf{\therefore{b=-1+5}}

\boxed{\sf{\therefore{b=4}}}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ and \ b \ are}}}

\sf\purple{\tt{5 \ and \ 4 \ respectively.}}

Similar questions