Math, asked by sneha21059, 9 months ago

if x²-5x+1=0; find x³+1/x³​

Answers

Answered by Rohith200422
13

Question:

If   {x}^{2}  - 5x + 1 = 0 ; find   {x}^{3}  +  \dfrac{1}{ {x}^{3} } .

To find:

★ To find the value of   {x}^{3}  +  \dfrac{1}{ {x}^{3} }

Answer:

The the value of  \underline{ \:\underline{ \: \sf \pink{ {x}^{3}  +  \dfrac{1}{ {x}^{3} }}    \: is \: \bold{  \pink{ 110}} \: }\: } .

Given:

★ An equation is given   {x}^{2}  - 5x + 1 = 0 .

Step-by-step explanation:

  {x}^{2}  - 5x + 1 = 0

\implies  {x}^{2}  + 1  =  5x

\implies  \dfrac{ {x}^{2}  + 1}{x}   =  5 \: ---> ( 1 )

Now squaring on both sides,

\implies  { \big(\dfrac{ {x}^{2}  + 1}{x}  \big)}^{2}    =   {(5)}^{2}

\implies  {x}^{2}  +  \dfrac{1}{x}  + 2 = 25

\implies  {x}^{2}  +  \dfrac{1}{{x }^{2} }   = 23 \: ---> ( 2 )

Multiplying eq ( 1 ) and ( 2 )

\longmapsto  \big(x +  \dfrac{1}{x}  \big) \big( {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \big) = 5 \times 23

\longmapsto  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  + x +  \dfrac{1}{x}  = 115

\longmapsto  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  +5 = 115

\longmapsto   \boxed{{x}^{3}  +  \dfrac{1}{ {x}^{3} }   = 110}

 \therefore The the value of  \underline{ \:\underline{ \: \bold{ {x}^{3}  +  \dfrac{1}{ {x}^{3} }}   \: is \: \bold{   110} \: }\: } .

Formula used:

 \bigstar \: \tt  {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

Similar questions