Math, asked by Karthikeyansurya, 4 months ago

if x²-5x+8 is positive, then find range of x​

Answers

Answered by pulakmath007
6

SOLUTION

The range of x when

 \sf{ {x}^{2} - 5x + 8 \:  \:  \: is \: positive }

EVALUATION

Here the given expression is

 \sf{ {x}^{2} - 5x + 8 \:   }

We now simplify it as below

 \sf{ {x}^{2} - 5x + 8 \:   }

 \displaystyle \sf{  = {x}^{2} -2 .x . \frac{5}{2}  +  { \bigg( \frac{5}{2}  \bigg)}^{2}  -  { \bigg( \frac{5}{2}  \bigg)}^{2}  + 8 \:   }

 \displaystyle \sf{  = { \bigg(x -  \frac{5}{2}  \bigg)}^{2}  + 8 -  \frac{25}{4}  \:   }

 \displaystyle \sf{  = { \bigg(x -  \frac{5}{2}  \bigg)}^{2}   +  \frac{32 - 25}{4}  \:   }

 \displaystyle \sf{  = { \bigg(x -  \frac{5}{2}  \bigg)}^{2}   +  \frac{7}{4}  \:   }

 \displaystyle \sf{  \because  { \bigg(x -  \frac{5}{2}  \bigg)}^{2}  \:  \: is \: non \: negative \:  for \: all \: real \: values \: of \: x \: \:  \: and \:  \:  \frac{7}{4}  \: is \: postive  }

 \displaystyle \sf{  \therefore \:  { \bigg(x -  \frac{5}{2}  \bigg)}^{2}  \:   + \frac{7}{4}  \: is \: postive  \: for \: all \: real \: values \: of \: x }

So the required Range is the set of Real numbers

 \sf{Hence \:  the  \: required \:  Range \:  =  \mathbb{ R}}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. 6x2 + x - 15 is divided by 3x + 5.

In each case, verify your answer.

https://brainly.in/question/17277773

2. If 2x/3y=3y/4z then show that

4x square -9y square+16z square=(2x -3y+4z) (2x+3y+4z)

https://brainly.in/question/17124386


amansharma264: Superb explanation sir
pulakmath007: Thank you
Similar questions