Math, asked by basakpihu123, 23 hours ago

. If x² - 6√3 x + 1 = 0 then find the value of x³ + 1/x³

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm \:  {x}^{2} - 6 \sqrt{3}x + 1 = 0

\rm \:  {x}^{2} + 1 = 6 \sqrt{3}x

\rm \: \dfrac{ {x}^{2}  + 1}{x} = 6 \sqrt{3}

can be further rewritten as

\rm \: \dfrac{ {x}^{2}}{x} + \dfrac{1}{x}  = 6 \sqrt{3}

\rm\implies \:x + \dfrac{1}{x} = 6 \sqrt{3}

On cubing both sides, we get

\rm \:  {\bigg(x + \dfrac{1}{x}  \bigg) }^{3} =  {(6 \sqrt{3} )}^{3}

We know,

\boxed{\tt{  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y) \: }} \\

So, using this identity, we get

\rm \:  {x}^{3} + \dfrac{1}{ {x}^{3} } + 3 \times x \times \dfrac{1}{x} \times \bigg(x + \dfrac{1}{x}  \bigg)  = 648 \sqrt{3}

\rm \:  {x}^{3} + \dfrac{1}{ {x}^{3} } + 3 \times 6 \sqrt{3}   = 648 \sqrt{3}

\rm \:  {x}^{3} + \dfrac{1}{ {x}^{3} } +18 \sqrt{3}   = 648 \sqrt{3}

\rm \:  {x}^{3} + \dfrac{1}{ {x}^{3} }   = 648 \sqrt{3}  - 18 \sqrt{3}

\rm\implies \: \:\boxed{\tt{   \: \rm \:  {x}^{3} + \dfrac{1}{ {x}^{3} }   = 630 \sqrt{3}  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions