Math, asked by justacupoftae, 6 months ago

If (x2 – 7x + 10) (y2 + y + 1) < 2y for all real y then x belongs to the interval (3, b) then b can be​

Answers

Answered by karishma12345699
1

Answer:

each edge of the cube is increased by 50. find then increase in area of the cube

Step-by-step explanation:

Mark me a brainliest please

Answered by payalchatterje
0

Answer:

Required value of b can be greater than (-1).

Step-by-step explanation:

Given,

( {x}^{2}  - 7x + 10)( {y}^{2}  + y + 1) &lt; 2y

It is also given that x and y belongs to (3,b).

We want to find value of b.

So,we are putting x = 3 and y = b in given equation.

( {3}^{2}  - 7 \times 3 + 10)( {b}^{2}  + b + 1) &lt; 2b \\ (9 - 21 + 10)( {b}^{2}  + b + 1) &lt; 2b \\  - 2 \times ( {b}^{2}  + b + 1) &lt; 2b \\  -  {b}^{2}  - b - 1 &lt; b \\  -  {b}^{2}  - 2b - 1 &lt; 0 \\  {b}^{2}  + 2b + 1 &gt; 0 \\  {(b + 1)}^{2}  &gt; 0 \\ b + 1 &gt; 0 \\ b &gt;  - 1

So, b can be greater than (-1).

This is a problem of equation part of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ3

Similar questions