Math, asked by ammuappu14, 2 months ago

if x²-8x+15=0 and (x-2)(x-p)=0 and one root is common, then p is
1) 1
2) 2
3) 3
4) 4
\large\mathfrak\pink{No~spamming✓}

Answers

Answered by jaydip1118
4

Answer:

\large\mathfrak\pink{ok}

Answer:

3x² + 10x - 8 = 0

Step-by-step explanation:

Let the roots of the given equation

3x² + 5x -2 = 0

be α and β

Sum of roots = -(Coefficient of x/Coefficient of x²)

α + β = -5/3

Product of roots = Constant term/Coefficient of x²

αβ = -2/3

Let the roots of required equation be λ and μ.

According to question

λ = 2α

and

μ = 2β

Thus the required quadratic equation will be,

x² - (λ + μ)x + λμ = 0

x² - (2α + 2β)x + 2α.2β = 0

x² - 2(α + β)x + 4αβ = 0

x² - 2(-5/3)x + 4(-2/3) = 0

x² + (10/3)x - (8/3) = 0

(3x² + 10x - 8)/3 = 0

3x² + 10x - 8 = 0

Which is the required quadratic equation.

Alternate Method:-

Given quadratic equation is

3x² + 5x - 2 = 0

Putting Replacing x with x/2,

\begin{gathered}3(\frac{x}{2})^2+5\frac{x}{2}-2=0\\\;\\\frac{3x^2}{4}+\frac{5x}{2}-2=0\\\;\\\frac{3x^2+10x-8}{4}=0\\\;\\3x^2+10x-8=0\end{gathered}

3(

2

x

)

2

+5

2

x

−2=0

4

3x

2

+

2

5x

−2=0

4

3x

2

+10x−8

=0

3x

2

+10x−8=0

Which is the required quadratic equation.

\large\mathfrak\pink{♡ ꃅꂦᖘꍟ ꓄ꃅꀭꌗ ꃅꍟ꒒ᖘꌗ ꌩꂦꀎ ♡}

Answered by amansharma264
25

EXPLANATION.

If x² - 8x + 15 = 0. and (x - 2)(x - p) = 0 is one roots is common.

As we know that,

⇒ x² - 8x + 15 = 0.

Factorizes the equation into middle term splits, we get.

⇒ x² - 5x - 3x + 15 = 0.

⇒ x(x - 5) - 3(x - 5) = 0.

⇒ (x - 3)(x - 5) = 0.

⇒ x = 3  and x = 5.

Another equation,

⇒ (x - 2)(x - p) = 0.

Expand this equation, we get.

⇒ x² - px - 2x + 2p = 0.

⇒ x² - (p + 2)x + 2p = 0.

Put the value of x = 3 in equation, we get.

⇒ (3)² - (p + 2)(3) + 2p = 0.

⇒ 9 - [3p + 6] + 2p = 0.

⇒ 9 - 3p - 6 + 2p = 0.

⇒ 3 - p = 0.

⇒ p = 3.

Put the value of x = 5 in equation, we get.

⇒ (5)² - (p + 2)(5) + 2p = 0.

⇒ 25 - [5p + 10] + 2p = 0.

⇒ 25 - 5p - 10 + 2p = 0.

⇒ 15 - 3p = 0.

⇒ p = 5.

Values of p = 3 and p = 5.

Option [3] is correct answer.

                                                                                                                                         

MORE INFORMATION.

Conditions for common roots.

Let quadratic equations are a₁x² + b₁x + c₁ = 0  and  a₂x² + b₂x + c₂ = 0.

(1) = If only one root is common.

x = b₁c₂ - b₂c₁/a₁b₂ - a₂b₁.

y = a₂c₁ - a₁c₂/a₁b₂ - a₂b₁.

(2) = If both roots are common.

a₁/a₂ = b₁/b₂ = c₁/c₂.

Similar questions