If x²(a²+b²) +2x(ac+bd) +c²+d² = 0 has no real roots, then
Answers
Answered by
13
Let D be the discriminant of the equation (a² + b²)x² + 2x(ac + bd) + (c² + d²) = 0
Then,
⇒ D = 4(ac + bd)² - 4(a² + b²)(c² + d²)
⇒ D = 4[(ac + bd)² - 4(a² + b²)(c² + d²)]
⇒ D = 4[a²c² + b²d² + 2ac × bd - a²c² - a²d² - b²c² - b²d²]
⇒ D = 4[2ac × bd - a²d² - b²c²]
⇒ D = - 4[a²d² + b²c² - 2ad × bc]
⇒ D = - 4(ad - bc)²
It is given that ad ≠ bc
⇒ ad - bc ≠ 0
⇒ (ad - bc)² > 0
⇒ - 4(ad - bc)² < 0
⇒ D < 0
Hence, the given equation has no real roots.
HOPE YOU LIKE IT .
Similar questions