if x2+px+q And x2+mx+n , x+a is a common factor than prove that
a= n-q
p-m
Answers
Solution :-
I) When x + a is thate factor of x² + px + q
Let f(x) = x² + px + q
By factor theorem
f(-a) = 0
⇒ (-a) ² + p(-a) + q = 0
⇒ a² - ap + q = 0 --- eq(1)
II) When x + a is that Factor of x² + mx + n
Let p(x) = x² + mx + n
By factor theorem
p(-a) = 0
⇒ (-a) ² + m(-a) + n = 0
⇒ a² - am + n = 0 --- eq(2)
From (1) and (2)
⇒ a² - ap + q = a² - am + n
⇒ - ap + q = - am + n
⇒ am - ap = n - q
⇒ a(m - p) = n - q
⇒ a = (n - q)/(m - p)
Hence proved.
Solution :
Given that (x + a) is a common factor of the polynomials x² + px + q and x² + mx + n
Thus,x = - a would be a solution of both the polynomials
Putting x = - a in x² + px + q,we write :
a² - ap + q ---------(1)
Putting x = - a in x² + mx + n,we write :
a² - am + n --------(2)
Equating equations (1) and (2),we write :
a² - ap + q = a² - am + n
→ am - ap = n - q
→ a = (n - q)/(m - p)