Math, asked by manjulasuresh10270, 5 months ago

If x²-x-6 and x²+3x-18 have a common
factor (x-a) then find the value of a.​

Answers

Answered by Anonymous
4

 \huge \mathfrak{answer : }

 \sf \large{ \boxed{ \underline{ \underline{ \purple{ \sf{ \: a = 3 \: }}}}}}

______________________________________________________

 \huge \mathfrak \red{Given : }

  • if x² - x - 6 and x² + 3x -18 have a common factor (x - a)

_____________________________________________________

 \huge \mathfrak \pink{To \:  find : }

  • value of a

__________________________________________________

 \huge \mathfrak \orange{solution : }

 \:  \:  \:  \sf \implies{ {x}^{2}  - x - 6 =  {x}^{2}  - 3x + 2x - 6}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{ = x(x - 3) + 2(x - 3)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = (x + 2)(x - 3) \:  ..............(1)}

 \sf \implies \blue{ {x}^{2} + 3x  - 18 =  {x}^{2} + 6x - 3x - 18}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{ = x(x  +  16) - 3(x + 6)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{ = (x  + 6)(x - 3).............(2)}

  • Now we have to compare equation (1) and (2) for the common factor we get,

 \rm{a = 3}

Answered by deli9
0

Answer:

a= -6

Explanation:

x-a becomes

x=a

so now x²-x-6

=a²-a-6

=a²-a=6 1

and x²+3x-18

=a²-3a-18

=a²-3a=18 2

Now from 1 = 2 we get

=18+3a-a=6

=2a=6-18

= a=12/2

= a= -6

Hope it helps you

Similar questions