If x²+y²=1, then find the maximum value of x²+4xy-y²
Answers
Answered by
8
Answer:
Here is Your Answer
Please Mark As Brainlist
Attachments:
Answered by
5
Answer :
√5
Solution :
- Given : x² + y² = 1
- To find : max. value of x² + 4xy - y²
Let x = cos∅ and y = sin∅ .
Then ,
=> x² + y² = cos²∅ + sin²∅
=> x² + y² = 1
Clearly ,
x² + y² = 1 if we assume x = cos∅ and y = sin∅ .
Now ,
x² + 4xy - y²
= cos²∅ + 4cos∅sin∅ - sin²∅
= (cos²∅ - sin²∅) + 2•(2sin∅cos∅)
= cos2∅ + 2sin2∅
Thus ,
x² + 4xy - y² = cos2∅ + 2sin2∅
= 2sin2∅ + 1cos2∅
Also ,
We know that the maximum value of a.sinØ + b.cosØ is √(a² + b²)
Thus ,
The maximum value of 2sin2∅ + 1cos2∅ is √(1² + 2²) = √(1 + 4) = √5
Hence ,
The maximum value of x² + 4xy - y² is √5
Moreover
The minimum value of a.sinØ + b.cosØ is –√(a² + b²)
Thus ,
The minimum value of 2sin2∅ + 1cos2∅ is –√(1² + 2²) = –√(1 + 4) = –√5
Hence ,
The minimum value of x² + 4xy - y² is –√5
Similar questions