Math, asked by pinkydevi8154, 1 year ago

If x2+y2+1/x2+1/y2=4, then the value of x2+y2 is

Answers

Answered by Naslinsk
28
hope u get the ans..
thanks
Attachments:
Answered by mysticd
18

Answer:

The\: value \: of \:x^{2}+y^{2}=2

Step-by-step explanation:

 Given\: x^{2}+y^{2}+\frac{1}{x^{2}}+\frac{1}{y^{2}}=4

\implies x^{2}+\frac{1}{x^{2}}+y^{2}+\frac{1}{y^{2}}-4=0

\implies x^{2}+\frac{1}{x^{2}}-2+y^{2}+\frac{1}{y^{2}}-2=0

\implies\left( x^{2}+\frac{1}{x^{2}}-2\times x \times \frac{1}{x}\right)+\left(y^{2}+\frac{1}{y^{2}}-2\times y \times \frac{1}{y}\right)=0

\implies \left(x-\frac{1}{x}\right)^{2}+\left(y-\frac{1}{y}\right)^{2} = 0

\implies \left(x-\frac{1}{x}\right)^{2}=0\: and \: \left(y-\frac{1}{y}\right)^{2} = 0

\implies x-\frac{1}{x}=0\:and \: y-\frac{1}{y}=0

\implies x =\frac{1}{x}\:and\:y=\frac{1}{y}

\implies x^{2}=1 \:and \: y^{2}=1

The\: value \: of \:x^{2}+y^{2}\\=1+1\\=2

•••♪

Similar questions