Math, asked by Anonymous, 3 months ago

If x² + y² + 10 = 2√2 x + 4√2 y, then find the value of ( x + y ).


Steph0303: Is the Answer 3 root 2 ?

Answers

Answered by MrImpeccable
66

ANSWER

Given:

  • x² + y² + 10 = 2√2 x + 4√2 y

To Find:

  • Value of (x + y)

Solution:

⇒ x² + y² + 10 = 2√2 x + 4√2 y

⇒ x² + y² + 10 - 2√2 x - 4√2 y = 0

Rearranging the terms,

⇒ x² - 2√2 x + y² - 4√2 y + 10 = 0

⇒ (x)² - 2*(√2)*(x) + (y)² - 2*(2√2)*(y) + 10 = 0

Adding and subtracting both (√2)² and (2√2)²

⇒ (x)² - 2*(√2)*(x) + (y)² - 2*(2√2)*(y) + 10 + (√2)² - (√2)² + (2√2)² - (2√2)²= 0

Rearranging the terms,

⇒ [(x)² - 2*(√2)*(x) + (√2)²] + [(y)² - 2*(2√2)*(y) + (2√2)²] + [10 - (√2)² - (2√2)²]= 0

We know that,

a² - 2ab + b² = (a - b)²

So,

⇒ [x - √2]² + [y - 2√2]² + [10 - 2 - 8] = 0

⇒ [x - √2]² + [y - 2√2]² + 10 - 10 = 0

⇒ [x - √2]² + [y - 2√2]² = 0

⇒ [x - √2]² = - [y - 2√2]²

⇒ [x - √2]² = [2√2 - y]²

Square rooting both sides,

⇒ x - √2 = 2√2 - y

⇒ x + y = 2√2 + √2

⇒ x + y = 3√2

Formula Used:

  • a² - 2ab + b² = (a - b)²

Learn More:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identities}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}


Steph0303: Perfect :)
Answered by Anonymous
66

Given :   \longmapsto \bf x^2 + y^2 + 10 = 2\sqrt {2} x + 4\sqrt {2} y \\ \\

Need To Find : The value of ( x + y ) .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \quad \bf \dag \:\:  x^2 + y^2 + 10 = 2\sqrt {2} x + 4\sqrt {2} y \\ \\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \: the \: Given \:  \::}}\\

 \qquad :\implies \sf x^2 + y^2 + 10 = 2\sqrt {2} x + 4\sqrt {2} y \\ \\

Or ,

 \qquad :\implies \sf x^2 + y^2 + 10 - 2\sqrt {2} x - 4\sqrt {2} y = 0 \\ \\

 \sf { By \:Rearranging \:the\:Like \:terms \:we\:get\::}

 \qquad :\implies \sf x^2 + y^2 + 10 - 2\sqrt {2} x - 4\sqrt {2} y = 0 \\ \\

 \qquad :\implies \sf x^2 -2\sqrt{2}x + y^2 - 4\sqrt{2}y + 10  = 0 \\ \\

 \qquad :\implies \sf x^2 -2\times(\sqrt{2})\times(x) + y^2 - 2\times(2\sqrt{2})\times(y) + 10  = 0 \\ \\

 \sf  By \:Adding \:and\:Subtracting \:(\sqrt {2})^2 \:\&\: (2\sqrt {2})^2\:we\:get\::\\\\

 \qquad :\implies \sf x^2 -2\times(\sqrt{2})\times(x) + y^2 - 2\times(2\sqrt{2})\times(y) + 10 + (\sqrt {2})^2 \:-\: (2\sqrt {2})^2 + (\sqrt {2})^2 \:-\: (2\sqrt {2})^2 = 0 \\ \\

 \sf { By \:Rearranging \:the\:Like \:terms \:we\:get\::}

 \qquad :\implies \sf x^2 -2\times(\sqrt{2})\times(x) + y^2 - 2\times(2\sqrt{2})\times(y) + 10 + (\sqrt {2})^2 \:-\: (2\sqrt {2})^2 + (\sqrt {2})^2 \:-\: (2\sqrt {2})^2 = 0 \\ \\

 \qquad :\implies \sf \bigg( x^2 -2\times(\sqrt{2})\times(x) + (\sqrt {2})^2\bigg)  + \bigg(  y^2 - 2\times(2\sqrt{2})\times(y) + (2\sqrt {2})^2\bigg)  + \bigg( 10 - (2\sqrt {2})^2 - (\sqrt {2})^2 \bigg) = 0 \\ \\

 \sf { By \:Solving \:we\:get\::}

 \qquad :\implies \sf \bigg( x^2 -2\times(\sqrt{2})\times(x) + (\sqrt {2})^2\bigg)  + \bigg(  y^2 - 2\times(2\sqrt{2})\times(y) + (2\sqrt {2})^2\bigg)  + \bigg( 10 - 4\times2 - 2 \bigg) = 0 \\ \\

 \qquad :\implies \sf \bigg( x^2 -2\times(\sqrt{2})\times(x) + (\sqrt {2})^2\bigg)  + \bigg(  y^2 - 2\times(2\sqrt{2})\times(y) + (2\sqrt {2})^2\bigg)  + \bigg( 10 - 8 - 2 \bigg) = 0 \\ \\

 \qquad :\implies \sf \bigg( x^2 -2\times(\sqrt{2})\times(x) + (\sqrt {2})^2\bigg)  + \bigg(  y^2 - 2\times(2\sqrt{2})\times(y) + (2\sqrt {2})^2\bigg)  \cancel{+ \bigg( 10 - 10 \bigg)} = 0 \\ \\

 \qquad :\implies \sf \bigg( x^2 -2\times(\sqrt{2})\times(x) + (\sqrt {2})^2\bigg)  + \bigg(  y^2 - 2\times(2\sqrt{2})\times(y) + (2\sqrt {2})^2\bigg)   = 0 \\ \\

As, We know that ,

 \bf Algebraic \: Indentity = ( a - b )^2 = a^2 - 2ab + b^2 \\

 \sf { By \:Using\:Indentity \:we\:get\::}

 \qquad :\implies \sf \bigg( x - \sqrt {2}\bigg)^2  + \bigg(  y - 2\sqrt {2}\bigg)^2   = 0 \\ \\

Or ,

 \qquad :\implies \sf \bigg( x - \sqrt {2}\bigg)^2  = - \bigg(  y - 2\sqrt {2}\bigg)^2    \\ \\

 \qquad :\implies \sf \bigg( x - \sqrt {2}\bigg)^2  =  \bigg(  -y + 2\sqrt {2}\bigg)^2    \\ \\

Or ,

 \qquad :\implies \sf \bigg( x - \sqrt {2}\bigg)^2  =  \bigg(  2\sqrt {2}-y\bigg)^2    \\ \\

 \sf { By \:Using\:Square \:Rooting\:both\:side\:we\:get\::}

 \qquad :\implies \sf \sqrt {\bigg( x - \sqrt {2}\bigg)^2}  =  \sqrt {\bigg(  2\sqrt {2}-y\bigg)^2}    \\ \\

As , We know that ,

  • \sqrt {a^{2}} = a

 \sf { By \:Using\:this \:we\:get\::}

 \qquad :\implies \sf x - \sqrt {2} =    2\sqrt {2}-y     \\ \\

 \qquad :\implies \sf x +y =  \sqrt {2}  +    2\sqrt {2}   \\ \\

 \qquad :\implies \bf x +y =     3\sqrt {2}   \qquad \longrightarrow Required \:AnswEr \:\\ \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  The\:Value\:of\:(x + y)  \:is\:\bf{3\sqrt{2}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

  • \boxed{\begin{array}{cc}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}

⠀⠀

Similar questions