If x² + y² + 10 = 2√2 x + 4√2 y, then find the value of ( x + y ).
Answers
ANSWER
Given:
- x² + y² + 10 = 2√2 x + 4√2 y
To Find:
- Value of (x + y)
Solution:
⇒ x² + y² + 10 = 2√2 x + 4√2 y
⇒ x² + y² + 10 - 2√2 x - 4√2 y = 0
Rearranging the terms,
⇒ x² - 2√2 x + y² - 4√2 y + 10 = 0
⇒ (x)² - 2*(√2)*(x) + (y)² - 2*(2√2)*(y) + 10 = 0
Adding and subtracting both (√2)² and (2√2)²
⇒ (x)² - 2*(√2)*(x) + (y)² - 2*(2√2)*(y) + 10 + (√2)² - (√2)² + (2√2)² - (2√2)²= 0
Rearranging the terms,
⇒ [(x)² - 2*(√2)*(x) + (√2)²] + [(y)² - 2*(2√2)*(y) + (2√2)²] + [10 - (√2)² - (2√2)²]= 0
We know that,
a² - 2ab + b² = (a - b)²
So,
⇒ [x - √2]² + [y - 2√2]² + [10 - 2 - 8] = 0
⇒ [x - √2]² + [y - 2√2]² + 10 - 10 = 0
⇒ [x - √2]² + [y - 2√2]² = 0
⇒ [x - √2]² = - [y - 2√2]²
⇒ [x - √2]² = [2√2 - y]²
Square rooting both sides,
⇒ x - √2 = 2√2 - y
⇒ x + y = 2√2 + √2
⇒ x + y = 3√2
Formula Used:
- a² - 2ab + b² = (a - b)²
Learn More:
Given :
Need To Find : The value of ( x + y ) .
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀⠀⠀
Or ,
As, We know that ,
Or ,
Or ,
As , We know that ,
Therefore,
⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀