Math, asked by Sunny3319v, 1 year ago

If x² + y2 = 10xy, prove that 2 log (x + y) = log x + log y + 2log 2 + log 3.​

Answers

Answered by Anonymous
39

\underline{\large{\sf To\:Prove :}}

\sf 2 log(x+y)= log x + log y + 2log 2 + log 3

\underline{\large{\sf Proof:}}

\sf x^2+y^2 = 10xy....(Given)

Add 2xy on both the sides

\sf x^2 + y^2 +2xy = 10xy + 2xy

{using identity \sf (a+b)^2=a^2+2ab+b^2 on LHS}

\sf (x + y)^2 = 12xy

Now, taking log on both the sides

\sf log(x+y)^2= log (12xy)

{using

 log_{e}( {m}^{n} )  = n log_{e}(m)

on LHS }

\sf 2 log (x+y)=log (4\times3xy)

{using

 log_{e}(mn)  =  log_{e}(m)  +  log_{e}(n)

on RHS }

\sf 2 log (x+y)=log 4+ log 3+ log (xy)

{we can write, log 4 = log (2)² = 2 log2 and log(xy)=log x + log y }

\sf 2 log(x+y)=2 log2 + log 3+log x + log y

{rearrange the terms on RHS }

\boxed{\sf 2 log(x+y)= log x + log y + 2log 2 + log 3}

Hence proved.

Similar questions