Math, asked by blueiphone2683, 5 months ago

If x2+y2 = 14xy then p/T 2 long [x+y] =4 long 2 + log x + logy

Answers

Answered by Arceus02
4

\underline{\textbf{\textsf{ \purple{Solution}:- }}}

\sf{\\}

\sf{ (x + y)^2 = x^2 + y^2 + 2xy }

\longrightarrow \sf{ (x + y)^2 = 14xy + 2xy }

\longrightarrow \sf{ (x + y)^2 = 16xy \quad \quad \dots(1)}

\sf{\\}

\underline{\texttt{ \red{To\:prove}:- }}

\sf{ 2log(x+y) = 4log2 + logx + logy}

\sf{\\}

\underline{\textbf{ \pink{L.H.S}:- }}

\sf{ 2 log (x + y)}

{\large{\green{\bigstar}}} {\boxed{\sf{a log(b) = {log(b)}^{a}}}}

\longrightarrow \sf{ log (x + y)^2}

\longrightarrow \sf{ log (16xy) \quad \quad [From\:(1)]}

{\large{\red{\bigstar}}} {\boxed{\sf{ log(ab) = log(a) + log(b)}}}

\longrightarrow \sf{ log16 + log(x) + log(y) }

\longrightarrow \sf{ log(2)^4 + log(x) + log(y)}

{\large{\blue{\bigstar}}} {\boxed{\sf{ log(b)^a = a\:log(b)}}}

\longrightarrow \sf{ 4\:log(2) + log(x) + log(y) }

\sf{\\}

\underline{\textbf{ \pink{R.H.S}:- }}

 \sf{ 4\:log(2) + log(x) + log(y) }

\sf{\\}

\leadsto \underline{\boxed{\mathfrak{\sf{ \pink{L.H.S\:=\:R.H.S} }}}}

Hence proved.

Similar questions