Math, asked by rajuprema502, 9 months ago

If x² + y² = 18 xy then prove that 2log (x- y) = 4 log
2+ log x + log y​

Answers

Answered by anindyaadhikari13
5

\star\:\:\:\bf\large\underline\blue{Question:-}

  • If x^{2}+y^{2}=18xy, then prove that 2 log(x - y)  = 4 \log \: 2 +  log  \: x +   \log y

\star\:\:\:\bf\large\underline\blue{Proof:-}

 {x}^{2}  +  {y}^{2}  = 18xy

 \implies  {x}^{2}  +  {y}^{2}  - 2xy = 18xy - 2xy

 \implies  {(x - y)}^{2}  = 16xy

Taking log on both side, we get,

 \log {(x - y)}^{2}  =   \log16xy

 \implies 2 \log(x - y)  =   \log16 +  \log x +   \log y

 \implies 2 \log(x - y)  =   \log {2}^{4}  +  \log x +   \log y

 \implies 2 \log(x - y)  =  4 \log {2}  +  \log x +   \log y

\star\:\:\:\bf\large\underline\blue{Hence\:Proved.}

Similar questions