if x²+y²=18xy then prove that 2log (x-y)=4log 2+log x+log y
Answers
Answered by
15
Step-by-step explanation:
Given:x^2+y^2=18xy
RTP: 2log(x-y)=4 log 2+ log x+ log y
Proof: x^2+y^2= 18 xy ( given)
x^2+y^2-2 xy= 18 xy -2 xy ( subtract 2xy both sides)
(x-y)^2 = 16 xy ( since x^2+y^2-2xy= (x-y)^2
log (x-y)^2= log 16xy ( applying log both sides)
2 log (x- y) = log 16+ log x+ log y
= log 2^4+ log x+ log y
2 log ( x- y) = 4 log 2 + log x+ log y
hence proved....
send me a comment is this satisfactory to u
Similar questions