Math, asked by chekkasuma2, 1 month ago

If x2 + y2= 25xy, then prove that 2 log(x + y) = 3log3 + logx + logy.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  = 25xy

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:2log(x + y) =3 log {3} + logx \:  +  \: logy

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  = 25xy

Adding 2xy on both sides, we get

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  + 2xy = 25xy + 2xy

Using identity on LHS, we get

\rm :\longmapsto\: {(x + y)}^{2} = 27xy

can be rewritten as

\rm :\longmapsto\: {(x + y)}^{2} =  {3}^{3} xy

Taking log on both sides

\rm :\longmapsto\: log{(x + y)}^{2} = log[ {3}^{3} xy]

We know,

\boxed{ \bf{ \: log {x}^{y} = y \: logx}}

and

\boxed{ \bf{ \: logxy \:  =  \: logx \:  +  \: logy}}

So, using these two Identities, we get

\rm :\longmapsto\:2log(x + y) = log {3}^{3}  + logx \:  +  \: logy

\rm :\longmapsto\:2log(x + y) =3 log {3} + logx \:  +  \: logy

Hence, Proved

Additional Information :-

\boxed{ \bf{ \:  log_{x}(x) = 1}}

\boxed{ \bf{ \:  log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y} }}

\boxed{ \bf{ \:  {e}^{logx} = x}}

\boxed{ \bf{ \:  {e}^{ylogx} =  {x}^{y} }}

\boxed{ \bf{ \:  {x}^{ log_{x}(y) }  = y}}

Similar questions