Math, asked by manasadubbaka211, 3 months ago

. If x2 + y2= 25xy, then prove that 2 log(x + y) = 3log3 + logx +logy.
plz hlp to prove it​

Answers

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \: If \:   {x}^{2}  +  {y}^{2}  = 25xy, \: prove \: that

\bf \:  2 log(x + y) =  3 log(3)  +  log(x)  +  log(y)

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  ⟼ \: (1). \:  log(x)  +  log(y)  =  log(xy)

\sf \:  ⟼ \: (2). \:  log(x) -   log(y)  =  log(\dfrac{x}{y} )

\sf \:  ⟼ \: (3). \:  log( {x}^{y} )  = y log(x)

─━─━─━─━─━─━─━─━─━─━─━─━─

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large\underline\purple{\bold{Solution  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  ⟼  \large \red  {According \:  to \:  statement }

\sf \:  ⟼  \: {{x}^{2}  +  {y}^{2}  = 25xy}

☆ Adding 2xy on both side, we get

\sf \:  ⟼ \:  {x}^{2}  +  {y}^{2}  + 2xy = 25xy + 2xy

\sf \:  ⟼ \:  {(x + y)}^{2}  = 27xy

☆ Taking log on both sides, we get

\sf \:  ⟼ \:  log{(x + y)}^{2}  =  log(27xy)

\sf \:  ⟼ \: 2 log(x + y)  =  log(27) +   log(x)   + log(y)

\sf \:  ⟼ \: 2 log(x + y)  =  log( {3}^{3} ) +   log(x)   + log(y)

\sf \:  ⟼ \: 2 log(x + y)  =  3log(3) +   log(x)   + log(y)

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions