Math, asked by Sarithabommidala, 3 months ago

if x²+y²=27xy then prove that 2 log (x-y)=2 log 5+log x+log y​

Answers

Answered by amitnrw
1

Given :  x²+y²=27xy

To Find : prove that 2 log (x-y)=2 log 5+log x+log y​

Solution:

x²+y²=27xy

=> x²+y²=25xy + 2xy

=> x²+y² - 2xy =25xy

=> (x - y)² = 25xy

Taking log both sides

=> log ( (x - y)² ) = log (25xy)

log aⁿ = n log a

log (abc) = log a + log b + log c

=> 2 log (x - y) = log 25 + logx + log y

=> 2 log (x - y) = log  5² + logx + log y

=> 2 log (x - y) =2 log  5 + logx + log y

QED

Hence proved

Learn More:

if x=log [a-b]; y=log [a+b] ; z= log [a2 - Brainly.in

brainly.in/question/13214148

If x=log(a+b) y=log(a-b) z=log(a²-b²). Then what is the relation ...

brainly.in/question/13203506

Answered by pulakmath007
2

SOLUTION

GIVEN

 \sf{ {x}^{2}  +  {y}^{2}  = 27xy}

TO PROVE

 \sf{2 log(x - y)  = 2 log  \: 5 +  log  \: x  +  log \: y }

FORMULA TO BE IMPLEMENTED

 \sf{1. \:  \:  \:  \sf{mlog(x )  =  log  \:  {x}^{m}  }}

 \sf{2. \:  \:  log(x y)  =   log  \: x  +  log \: y }

PROOF

LHS

 \sf{ = 2 log(x - y)   }

 \sf{ =  log{(x - y)}^{2}    } \:  \: (by \: formula \: 1)

 \sf{ = log( {x}^{2} +  {y}^{2}  - 2xy )   }

 \sf{ = log(27xy - 2xy )   }

 \sf{ = log(25xy  )   }

 \sf{ = log(25 )  +  log \: x +  log \: y \:  \: (by \: formula \: 2) }

 \sf{ = log( {5}^{2} )  +  log \: x +  log \: y \:  }

 \sf{ = 2log \: 5+  log \: x +  log \: y \:  }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Solution: 10.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

Similar questions