Math, asked by joydeep949, 1 year ago

if x2+y2=6xy,prove that 2log(x+y)=logx+logy+3log2

Answers

Answered by MaheswariS
18

\underline{\textbf{Given:}}

\mathsf{x^2+y^2=6\,xy}

\underline{\textbf{To prove:}}

\mathsf{2\;log(x+y)=log\,x+log\,y+3\,log\,2}

\underline{\textbf{Solution:}}

\underline{\textbf{Product rule:}}

\boxed{\mathsf{log\,(MN)=log\,M+log\,N}}

\underline{\textbf{Power rule:}}

\boxed{\mathsf{log\,M^n=n\;log\,M}}

\mathsf{Consider,}

\mathsf{x^2+y^2=6\,xy}

\textsf{Add 2xy on bothsides, we get}

\mathsf{x^2+y^2+2\,xy=6\,xy+2\,xy}

\mathsf{(x+y)^2=8\,xy}

\textsf{Taking logrithm on bothsides, we get}

\mathsf{log\,(x+y)^2=log\,8\,xy}

\mathsf{2\,log\,(x+y)=log\,8+log\,x+log\,y}\;\;\;\;\textsf{(Using product and power rule)}

\mathsf{2\,log\,(x+y)=log\,2^3+log\,x+log\,y}

\boxed{\mathsf{2\,log\,(x+y)=3\,log\,2+log\,x+log\,y}}\;\;\;\;\textsf{(Using power rule)}

Answered by yvishalvarma0411
1

Answer:

Given,

x²+y²=6xy

Need to Prove,

2log(x+y) = 3log2 + logx + logy

Attachments:
Similar questions