Math, asked by sundarallu3549, 4 days ago

If x2+y2= 6xy
Then prove that 2log(x+y)= logx+logy+3log2

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm \:  {x}^{2} +  {y}^{2} = 6xy \\

\large\underline{\sf{To\:prove- }}

\rm \: 2log(x + y) = logx + logy + 3log2 \\

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {x}^{2} +  {y}^{2} = 6xy \\

On adding 2xy on both sides, we get

\rm \:  {x}^{2} +  {y}^{2}  + 2xy= 6xy + 2xy \\

\rm \:  {(x + y)}^{2} = 8xy \\

Taking log on both sides, we get

\rm \:  log{(x + y)}^{2} = log(8xy )\\

We know,

\boxed{\sf{  \: \: log {x}^{y} \:  =  \: y \: logx \:  }}\\

\boxed{\sf{  \: \: logxy = logx + logy \: }} \\

So, using these results, we get

\rm \: 2log(x + y) = logx + logy + log8 \\

\rm \: 2log(x + y) = logx + logy + log {2}^{3}  \\

\rm \: 2log(x + y) = logx + logy + 3log2  \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:log \frac{x}{y} = logx - logy \: }} \\

\boxed{\sf{  \: log_{x}(y)  =  \frac{logy}{logx}  \: }} \\

\boxed{\sf{  \: log_{x}(x)  = 1  \: }} \\

\boxed{\sf{  \: log_{ {x}^{a} }( {x}^{b} )  =  \frac{b}{a} \: }} \\

\boxed{\sf{  \: log_{ {x}^{a} }( {y}^{b} )  =  \frac{b}{a}  log_{x}(y) \: }} \\

\boxed{\sf{  \: {a}^{ log_{a}(x) }  = x \: }} \\

\boxed{\sf{  \: {a}^{y log_{a}(x) }  =  {x}^{y}  \: }} \\

Answered by InsaneAnswering
3

ANSWER IS IN THE ATTACHMENT ABOVE

HENCE PROVED!!!!

Attachments:
Similar questions