If x2+y2 = 6xy then show that 2logx+y =logs +logs +3log2
Attachments:

Answers
Answered by
0
Given, x² + y² = 6xy
= > x² + y² = 8xy - 2xy
= > x² + y² + 2xy = 8xy -------: ( 1 )
Then,
To prove : 2 log ( x + y ) = log x + log y + 3 log 2

LHS = >
= > 2 log ( x + y )
By the properties of logarithms
= > log ( x + y )²
= > log { ( x )² + ( y )² + 2xy }
= > log { x² + y² + 2xy }
From ( i ),
= > log { 8xy }
From the properties of logarithms
= > log 8 + log x + log y
= > log 2³ + log x + log y
= > 3 log 2 + log x + log y
= > log x + log y + 3 log 2
=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=
RHS = >
= > log x + log y + 3 log 2
LHS = RHS

= > x² + y² = 8xy - 2xy
= > x² + y² + 2xy = 8xy -------: ( 1 )
Then,
To prove : 2 log ( x + y ) = log x + log y + 3 log 2
LHS = >
= > 2 log ( x + y )
By the properties of logarithms
= > log ( x + y )²
= > log { ( x )² + ( y )² + 2xy }
= > log { x² + y² + 2xy }
From ( i ),
= > log { 8xy }
From the properties of logarithms
= > log 8 + log x + log y
= > log 2³ + log x + log y
= > 3 log 2 + log x + log y
= > log x + log y + 3 log 2
=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=×=
RHS = >
= > log x + log y + 3 log 2
LHS = RHS
Similar questions