Math, asked by himanshu7165, 3 months ago

If x²+y²-6y-10z+z²+38 = -4x . Then find (x+y+z)
please give full solution​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

 \sf \:  {x}^{2}  +  {y}^{2}  - 6y - 10z +  {z}^{2}  + 38 =  - 4x

\large\underline{\sf{To\:Find :-}}

 \sf \: the \: value \: of \: x + y + z

\large\underline{\sf{Solution-}}

Given that

 \sf \:  {x}^{2}  +  {y}^{2}  - 6y - 10z +  {z}^{2}  + 38 =  - 4x

 \sf \:  {x}^{2}  +  {y}^{2}  - 6y - 10z +  {z}^{2}  + 38  + 4x = 0

Rearrange the terms, we get

 \sf \:  ({x}^{2}  + 4x) + ( {y}^{2}  - 6y) +  ({z}^{2}  - 10z) + 38 = 0

 \sf \:  ({x}^{2}  + 4x + 4 - 4) + ( {y}^{2}  - 6y + 9 - 9) +  ({z}^{2}  - 10z + 25 - 25) + 38 = 0

 \:   \sf \:  \:  \:  \:  \: (using \: the \: concept \: of \: completing \: squares)

 \sf \:  {(x + 2)}^{2} - 4+{(y - 3)}^{2}- 9 +  {(z - 5)}^{2}   -  25  +  38 = 0

\bf\implies \: {(x + 2)}^{2}  +  {(y - 3)}^{2}  +  {(z - 5)}^{2}  = 0

Since, we know

Sum of squares is 0 only when

 \sf \: x + 2 = 0 \:  \: and \:  \: y - 3 = 0 \:  \: and \:  \:  z - 5 = 0

\bf\implies \:x =  - 2 \:  \: and \:  \: y \:  =  \: 3 \:  \: and \:  \: z \:  =  \: 5

Hence,

 \rm :\longmapsto\:\sf \: x \:  +  \: y \:  +  \: z \: =   \:  - 2 + 3 + 5 = 6

Useful Identities :-

 \boxed{ \rm \:  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} }

 \boxed{ \rm \:  {(x - y)}^{2}  =  {x}^{2}  - 2xy +  {y}^{2} }

 \boxed{ \rm \:  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)}

 \boxed{ \rm \:  {(x - y)}^{3}  =  {x}^{3}  -  {y}^{3}  - 3xy(x - y)}

 \boxed{ \rm \:  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} }

 \boxed{ \rm \:  {x}^{3}   -   {y}^{3}  = (x  -  y)( {x}^{2}   +  xy +  {y}^{2} }

 \boxed{ \rm \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}

Similar questions