If x²+y² =6y ,
Then prove that,
2log(x+y) =logx+logy+3log2 .
Answers
Answered by
1
Answer:
LHS=RHS
Step-by-step explanation:
x^2+y^2 = 6xy
add both sides 2xy ..
x^2+y^2+2xy=6xy+2xy
now [(x^2+y^2+2xy=(x+y)^2]...
(x+y)^2=8xy
add log on both sides...
log(x+y)^2=log8xy
by logarithm identities ...
log(x+y)^2=2log(x+y) [LHS]
log abc= log a + log b + log c [RHS]
then,
2log(x+y) = log 8 + log x + log y
2log(x+y) = log 2^3 + log x + log y
since, log a^m =mloga
so,
2log(x+y)= log x + log y + 3log2
LHS= RHS
HENCE PROVED
Similar questions