If x² + y²=loxy, then prove that 2 log (x+4)=log x + log y+2 log 2 + log 3
Answers
Step-by-step explanation:
Given :-
x²+y² = 10xy
Correction :-
2 log (x+y)=log x + log y+2 log 2 + log 3
To find :-
Prove that 2 log (x+y)=log x + log y
+2 log 2 + log 3
Solution :-
Given that
x²+y² = 10xy
On adding 2xy both sides then
=> x²+y² +2xy = 10xy +2xy
=>x²+ 2xy + y² = 12xy
=> (x+y)² = 12xy
On taking logarithms both sides then
=> log (x+y)² = log (12xy)
We know that
log a^m = m log a
=> 2 log (x+y) = log (12xy)
=> 2 log (x+y) = log (2×2×3×x×y)
=> 2 log (x+y) = log (2²×3×x×y)
We know that
log (ab) = log a + log b
=> 2 log(x+y)=log 2² + log 3 + log x + log y
We know that
log a^m = m log a
=>2 log(x+y)=2 log 2 + log 3 + log x + log y
=>2 log(x+y) = log x + log y 2 log 2 + log 3
Hence, Proved.
Answer:-
If x²+y² = 10xy then 2 log (x+y)
= log x + log y 2 log 2 + log 3
Used formulae:-
→ log a^m = m log a
→ log (ab) = log a + log b
→ (a+b)² = a²+2ab+b²