If x2 - y2 sec’® = 10 be a hyperbola and x2 sec*6 + y2 = 5 be an ellipse such that the eccentricity of hyperbola = root 5 eccentricity of ellipse then find the length of latus rectum of ellipse :
Answers
Given : equation of hyperbola, x² - y²secθ = 10 and equation of ellipse, x²sec²θ + y² = 5 and also eccentricity of hyperbola = √5 eccentricity of ellipse.
To find : The length of Latus rectum of ellipse.
solution : equation of hyperbola, x² - y³sec²θ = 10
⇒x²/10 - y²/10cos²θ = 1 on comparing with x²/a² - y²/b² = 1
a = √10 , b = √10 cosθ
now eccentricity of hyperbola, E = √(1 + b²/a²)
= √(1 + cos²θ)
equation of ellipse , x²sec²θ + y² = 5
⇒x²/5cos²θ + y²/5 = 1 on comparing with x²/a² + y²/b² = 1
we get, a = √5 cosθ , b = √5
eccentricity of ellipse, e = √(1 - a²/b²)
= √(1 - cos²θ) = sinθ
now E = √5e [ given ]
⇒√(1 + cos²θ) = √5 sinθ
⇒1 + cos²θ = 5sin²θ
⇒1 + cos²θ = 5 - 5cos²θ
⇒cos²θ = 2/3
now length of Latus rectum = 2b²/a
= 2(5cos²θ)/√5
= (10 × 2/3)/√5
= 4√5/3
Therefore the length of Latus rectum is 4√5/3