Math, asked by Abdida8319, 1 year ago

if x2 + y2 = t + 1/t and x4 +y4 = t2 + 1/t2, then prove tht dy/dx = 1/ x3y

Answers

Answered by JinKazama1
30
For Calculation see Pic:


Hope, you understand my answer!!
Attachments:

nityaa: please explain last step
JinKazama1: Substitute value of y = 1/(x^2y)
Answered by hukam0685
21

 if \:  \: {x}^{2}  +  {y}^{2}  = t +  \frac{1}{t} \\  \\ and \:  \:  {x}^{4}   +  {y}^{4}  =  {t}^{2}  +  \frac{1}{ {t}^{2} }
squaring both sides,the equation given below


{x}^{2}  +  {y}^{2}  = t +  \frac{1}{t} \\  \\
we get

( {x^{2} +  {y}^{2}  })^{2}  =  {(t -  \frac{1}{t} )}^{2}  \\  \\  {x}^{4}  +  {y}^{4}  + 2 {x}^{2}  {y}^{2}  =  {t}^{2}  +  \frac{1}{ {t}^{2} }  - 2t( \frac{1}{t} ) \\  \\
from another equation put the value of
 {x}^{4}  +  {y}^{4} \:  \:  in \: the \: eq \\  \\
{t}^{2}  +  \frac{1}{ {t}^{2} }  + 2 {x}^{2}  {y}^{2}  =  {t}^{2}  +  \frac{1}{ {t}^{2} }  - 2\\  \\  \\ 2 {x}^{2}  {y}^{2}  =  - 2 \\  \\  {x}^{2}  {y}^{2}  =  - 1....eq1 \\  \\ or \\  \\ y =  \frac{ - 1}{ {x}^{2}y } ......eq2 \\  \\
take derivative of eq1 with respect to x

2x {y}^{2}  + 2 {x}^{2} y  \:  \frac{dy}{dx}  = 0 \\  \\ 2 {x}^{2} y  \:  \frac{dy}{dx}  = 2x {y}^{2} \\  \\  \frac{dy}{dx}  =  \frac{y}{x}  \\  \\ put \: value \: of \: y \: from \: eq2 \\  \\ \frac{dy}{dx} = ( \frac{1}{x} )(\frac{ - 1}{ {x}^{2}y }) \\  \\ \frac{dy}{dx} = \frac{ - 1}{ {x}^{3}y }  \\  \\
Hence proved
Similar questions