Math, asked by ruchirawat2602, 7 months ago

If(x²+y²)=xy,then dy/dx?

Answers

Answered by BrainlyTornado
5

CORRECT QUESTION:

  • If (x² + y²)² = xy, then dy/dx.

ANSWER:

 \sf The \ value \ of \ \dfrac{dy}{dx}  = \dfrac{ y-4x^{3}-3 y^{2}x}{4x^2y+4y^3-x}

GIVEN:

  • (x² + y²)² = xy.

TO FIND:

  • The value of dy/dx.

EXPLANATION:

Let A = (x² + y²)² and B = xy

Take A:

A = (x² + y²)²

Differentiate w.r.t x

 \sf \dfrac{d A }{dx}=  \dfrac{d}{dx} (x^{2}  +  y^{2})^2

\boxed{ \bold{ \large{\gray{ \dfrac{d}{dx} x^{n}  = n  {x}^{n - 1}}}}}

 \sf \dfrac{d A }{dx}= 2(x^{2}  +  y^{2})\dfrac{d}{dx}(x^2 + y^2)

 \sf \dfrac{d A }{dx}= 2(x^{2}  +  y^{2})\left(2x+ 2y\dfrac{dy }{dx}\right)

 \sf \dfrac{d A }{dx}= (2x^{2}  + 2 y^{2})\left(2x+ 2y\dfrac{dy }{dx}\right)

 \sf \dfrac{d A }{dx}= 4x^{3}  + 4x^2y\left(\dfrac{dy }{dx}\right)+4y^{2}x+4y^3\left(\dfrac{dy }{dx}\right)

Take B:

B = xy

Differentiate w.r.t x

 \sf \dfrac{dB}{dx}=  \dfrac{d}{dx} xy

 \boxed{ \bold {\large{ \gray{\dfrac{d}{dx} uv = uv'+vu'}}}}

 \sf \dfrac{dB}{dx}= y \left( \dfrac{d}{dx}x \right) +x \left(\dfrac{d}{dx} y\right)

 \boxed{ \bold {\large{ \gray{\dfrac{d}{dx}x = 1}}}}

 \sf \dfrac{dB}{dx}= y +x \left(\dfrac{dy}{dx} \right)

 \sf We\ know\ that\ A=B

Differentiate w.r.t x

 \sf  \dfrac{dA}{dx}= \dfrac{dB}{dx}

Equate the respective values.

 \sf 4x^{3}  + 4x^2y\dfrac{dy }{dx}+4 y^{2}x+4y^3\dfrac{dy }{dx}= y +x\left(\dfrac{dy}{dx} \right)

 \sf 4x^2y\dfrac{dy }{dx}+4y^3\dfrac{dy }{dx}-x\left(\dfrac{dy}{dx} \right)= y-4x^{3}-4 y^{2}x

Take dy/dx as common.

 \sf \dfrac{dy }{dx}(4x^2y+4y^3-x)= y-4x^{3}-4 y^{2}x

 \sf \dfrac{dy}{dx}  = \dfrac{ y-4x^{3}-4 y^{2}x}{4x^2y+4y^3-x}

 \sf The \ value \ of \ \dfrac{dy}{dx}  = \dfrac{ y-4x^{3}-4 y^{2}x}{4x^2y+4y^3-x}

Similar questions