If x²+y²+z²=40 and xy+yz+zx=12,then find the value of x³+y³+z³-3xyz
Answers
Given
⇒x² + y² + z² = 40
⇒xy + yz + zx = 12
To find
⇒The value of x³ + y³ + z³ - 3xyz
Identities we use
⇒a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
⇒( a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Using this identities , we can write as
⇒x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⇒(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
First of all we have to find the value of (x + y + z) , so we use
⇒(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
Now Put the value
⇒(x + y + z)² = 40 + 2(12)
⇒(x + y + z)² = 40 + 24
⇒(x + y + z)² = 64
⇒x + y + z = 8
Now put the value on
⇒x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⇒x³ + y³ + z³ - 3xyz = (8)(40 - { xy + yz + zx })
⇒x³ + y³ + z³ - 3xyz = 8(40 - 12)
⇒x³ + y³ + z³ - 3xyz = 8(28)
⇒x³ + y³ + z³ - 3xyz = 224
Answer
⇒x³ + y³ + z³ - 3xyz = 224
Step-by-step explanation:
ANSWER ✍️
Given
⇒x² + y² + z² = 40
⇒xy + yz + zx = 12
To find
⇒The value of x³ + y³ + z³ - 3xyz
Identities we use
⇒a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
⇒( a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Using this identities , we can write as
⇒x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⇒(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
First of all we have to find the value of (x + y + z) , so we use
⇒(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
Now Put the value
⇒(x + y + z)² = 40 + 2(12)
⇒(x + y + z)² = 40 + 24
⇒(x + y + z)² = 64
⇒x + y + z = 8
Now put the value on
⇒x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - zx)
⇒x³ + y³ + z³ - 3xyz = (8)(40 - { xy + yz + zx })
⇒x³ + y³ + z³ - 3xyz = 8(40 - 12)
⇒x³ + y³ + z³ - 3xyz = 8(28)
⇒x³ + y³ + z³ - 3xyz = 224
Answer
⇒x³ + y³ + z³ - 3xyz = 224