Math, asked by sian18, 1 year ago

If x² + y² + z² = xy + yz + zx.
then the value of
(3x⁴ + 7y⁴+ 5z⁴)/5x²y² + 7y²z² - 3z²x² is?​

Answers

Answered by sivaprasath
3

Answer:

\frac{3x^4 + 7y^4 + 5z^4}{5x^2y^2+7y^2z^2-3z^2x^2} = \frac{5}{3}

Step-by-step explanation:

Given :

If x^2 + y^2 + z^2 = xy+yz+zx

then the value of : \frac{3x^4 + 7y^4 + 5z^4}{5x^2y^2+7y^2z^2-3z^2x^2}

Solution :

If x^2 + y^2 + z^2 = xy+yz+zx,

then,

x^2 + y^2 + z^2 - xy - yz - zx = 0

By multiplyig & dividing by 2 , both the sides ,.

We get,

\frac{1}{2}(2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx) = 0

\frac{1}{2}[(x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2)] = 0

⇒  \frac{1}{2} [(x-y)^2 + (y-z)^2 + (z - x)^2]=0

(x-y)^2 + (y-z)^2 + (z - x)^2 = 0

If sum of squares are zero,. then, the numbers must be 0,.

x - y = 0 , y - z = 0 , z - x = 0

x = y , y=z , z=x

x=y=z

By converting every term to x,.

\frac{3x^4 + 7y^4 + 5z^4}{5x^2y^2+7y^2z^2-3z^2x^2}

\frac{3x^4 + 7x^4 + 5x^4}{5x^2(x^2) + 7(x^2)(x^2) - 3(x^2)(x^2)}

\frac{3x^4 + 7x^4 + 5x^4}{5x^4 + 7x^4 - 3x^4}

\frac{15x^4}{9x^4} = \frac{5}{3}

Similar questions