Math, asked by KushiKumari1123, 5 months ago

If x2²+1/x² =7,find the values of
3x²–3x²​

Please help me​

Answers

Answered by Tomboyish44
76

Corrected question:

If x² + (1/x²) = 7, find the value/s of the expression 3x² - (3/x²).

Explanation:

ATQ:

\Longrightarrow \ \sf x^{2} + \dfrac{1}{x^2} = 7 \ \dashrightarrow \ Eq(1)

We know that;

⇒ (a - b)² = a² + b² - 2ab

⇒ (a - b)² + 2ab = a² + b²

Let "a" = x and "b" = 1/x, Using the identity (a - b)² + 2ab = a² + b² in Equation 1 we get:

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 + \ 2\Bigg\{x\Bigg\}\Bigg\{\dfrac{1}{x}\Bigg\} = 7

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 + \ 2 = 7

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 = 7 - 2

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 = 5

\Longrightarrow \ \sf x - \dfrac{1}{x} = \pm \sqrt{5} \ \dashrightarrow Eq(2)

Similarly, using the identity (a + b)² - 2ab = a² + b² in Equation 1 we get:

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 - \ 2\Bigg\{x\Bigg\}\Bigg\{\dfrac{1}{x}\Bigg\} = 7

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 - \ 2 = 7

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 = 7 + 2

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 = 9

\Longrightarrow \ \sf x + \dfrac{1}{x} = \sqrt{9}

\Longrightarrow \ \sf x + \dfrac{1}{x} = \pm 3 \ \dashrightarrow Eq(3)

According to the question, we need to find the value of 3x² - (3/x²).

\Longrightarrow \ \sf 3x^{2} - \dfrac{3}{x^2}

Take 3 out as common:

\Longrightarrow \ \sf 3\Bigg\{x^{2} - \dfrac{1}{x^2}\Bigg\}

Let "a" = x and "b" = 1/x. We know that:

⇒ a² - b² = (a + b)(a - b)

Using this identity we get:

\Longrightarrow \ \sf 3\Bigg\{x - \dfrac{1}{x}\Bigg\}\Bigg\{x + \dfrac{1}{x}\Bigg\}

Substitute the values in Eq(2) and Eq(3) in the above equation.

\Longrightarrow \ \sf 3\Bigg\{\pm \sqrt{5}\Bigg\}\Bigg\{\pm 3\Bigg\}

\Longrightarrow \ \sf \pm 9\sqrt{5}

Therefore the answer is ± 9√5.

Answered by XxitsmrseenuxX
0

Answer:

Corrected question:

If x² + (1/x²) = 7, find the value/s of the expression 3x² - (3/x²).

Explanation:

ATQ:

\Longrightarrow \ \sf x^{2} + \dfrac{1}{x^2} = 7 \ \dashrightarrow \ Eq(1)

We know that;

⇒ (a - b)² = a² + b² - 2ab

⇒ (a - b)² + 2ab = a² + b²

Let "a" = x and "b" = 1/x, Using the identity (a - b)² + 2ab = a² + b² in Equation 1 we get:

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 + \ 2\Bigg\{x\Bigg\}\Bigg\{\dfrac{1}{x}\Bigg\} = 7

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 + \ 2 = 7

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 = 7 - 2

\Longrightarrow \ \sf \Bigg\{x - \dfrac{1}{x}\Bigg\}^2 = 5

\Longrightarrow \ \sf x - \dfrac{1}{x} = \pm \sqrt{5} \ \dashrightarrow Eq(2)

Similarly, using the identity (a + b)² - 2ab = a² + b² in Equation 1 we get:

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 - \ 2\Bigg\{x\Bigg\}\Bigg\{\dfrac{1}{x}\Bigg\} = 7

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 - \ 2 = 7

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 = 7 + 2

\Longrightarrow \ \sf \Bigg\{x + \dfrac{1}{x}\Bigg\}^2 = 9

\Longrightarrow \ \sf x + \dfrac{1}{x} = \sqrt{9}

\Longrightarrow \ \sf x + \dfrac{1}{x} = \pm 3 \ \dashrightarrow Eq(3)

According to the question, we need to find the value of 3x² - (3/x²).

\Longrightarrow \ \sf 3x^{2} - \dfrac{3}{x^2}

Take 3 out as common:

\Longrightarrow \ \sf 3\Bigg\{x^{2} - \dfrac{1}{x^2}\Bigg\}

Let "a" = x and "b" = 1/x. We know that:

⇒ a² - b² = (a + b)(a - b)

Using this identity we get:

\Longrightarrow \ \sf 3\Bigg\{x - \dfrac{1}{x}\Bigg\}\Bigg\{x + \dfrac{1}{x}\Bigg\}

Substitute the values in Eq(2) and Eq(3) in the above equation.

\Longrightarrow \ \sf 3\Bigg\{\pm \sqrt{5}\Bigg\}\Bigg\{\pm 3\Bigg\}

\Longrightarrow \ \sf \pm 9\sqrt{5}

Therefore the answer is ± 9√5.

Similar questions