If x3+3/x=4(a3+b3) and 3x+3/x3=4(a3-b3) then prove that , (a2- b2)=1
Answers
Answered by
0
a² - b² = 1 if x³ + 3/x = 4 (a³ + b³) & 3x + 1/x³ = 4(a³ - b³)
Step-by-step explanation:
Correct Question is : if x³ + 3/x = 4 (a³ + b³) & 3x + 1/x³ = 4(a³ - b³)
then a² - b²
x³ + 3/x = 4 (a³ + b³) Eq1
3x + 1/x³ = 4(a³ - b³) Eq2
Adding both (eq1 + eq2)
x³ + 1/x³ + 3(x + 1/x) = 8a³
=> (x + 1/x)³ = 8a³
=> x + 1x = 2a -eq3
on subtraction (eq 1 - Eq2)
x³ - 1/x³ - 3(x - 1/x) = 8b³
=> (x - 1/x)³ = (2b)³
=> x - 1/x = 2b Eq4
Adding both (eq 3 + eq4)
2x = 2a + 2b
=> x = a + b Eq5
on subtracting (eq3 - eq 4)
2/x = 2a - 2b
=> 1/x = a - b Eq6
on multiplying (eq5 * eq 6)
x(1/x) = (a + b)(a - b)
=> 1 = a² - b²
=> a² - b² = 1
Learn more:
if x=1/4-x, find : x+1/x - Brainly.in
https://brainly.in/question/5639594
X-1/x=3 find x^3-1/x^3
https://brainly.in/question/7310418
Similar questions