Math, asked by iamswara2005, 5 hours ago

if x3+5x2y+xy-5=0 then dy/dx is​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {x}^{3} +  {5x}^{2}y + xy - 5 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{3} +  ({5x}^{2} + x)y - 5 = 0

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \bigg[ {x}^{3} +  ({5x}^{2} + x)y - 5 \bigg]= 0

\rm :\longmapsto\:\dfrac{d}{dx}  {x}^{3}  + \dfrac{d}{dx} (5 {x}^{2} + x)y  -  \dfrac{d}{dx} 5 = 0

We know,

\boxed{\tt{ \dfrac{d}{dx}  {x}^{n} \:  =  \:  {nx}^{n - 1} }}

\boxed{\tt{ \dfrac{d}{dx} k = 0}}

\boxed{\tt{ \dfrac{d}{dx} uv = u\dfrac{d}{dx} v + v\dfrac{d}{dx} u}}

So, using these Identities, we get

\rm :\longmapsto\: {3x}^{3 - 1} + ( {5x}^{2} + x)\dfrac{d}{dx} y + y\dfrac{d}{dx} ( {5x}^{2} + x) - 0 = 0

\rm :\longmapsto\: {3x}^{2} + ( {5x}^{2} + x)\dfrac{dy}{dx} + y( {10x}^{2 - 1} + 1) = 0

\rm :\longmapsto\: {3x}^{2} + ( {5x}^{2} + x)\dfrac{dy}{dx} + y( 10x + 1) = 0

\rm :\longmapsto\:( {5x}^{2} + x)\dfrac{dy}{dx} =  -  {3x}^{2}  -  y(10x + 1)

\bf\implies \:\dfrac{dy}{dx}  =  - \dfrac{ {3x}^{2}  + y(10x + 1)}{ {5x}^{2}  + x}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO LEARN

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {x}^{3} +  {5x}^{2}y + xy - 5 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{3} +  ({5x}^{2} + x)y - 5 = 0

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \bigg[ {x}^{3} +  ({5x}^{2} + x)y - 5 \bigg]= 0

\rm :\longmapsto\:\dfrac{d}{dx}  {x}^{3}  + \dfrac{d}{dx} (5 {x}^{2} + x)y  -  \dfrac{d}{dx} 5 = 0

We know,

\boxed{\tt{ \dfrac{d}{dx}  {x}^{n} \:  =  \:  {nx}^{n - 1} }}

\boxed{\tt{ \dfrac{d}{dx} k = 0}}

\boxed{\tt{ \dfrac{d}{dx} uv = u\dfrac{d}{dx} v + v\dfrac{d}{dx} u}}

So, using these Identities, we get

\rm :\longmapsto\: {3x}^{3 - 1} + ( {5x}^{2} + x)\dfrac{d}{dx} y + y\dfrac{d}{dx} ( {5x}^{2} + x) - 0 = 0

\rm :\longmapsto\: {3x}^{2} + ( {5x}^{2} + x)\dfrac{dy}{dx} + y( {10x}^{2 - 1} + 1) = 0

\rm :\longmapsto\: {3x}^{2} + ( {5x}^{2} + x)\dfrac{dy}{dx} + y( 10x + 1) = 0

\rm :\longmapsto\:( {5x}^{2} + x)\dfrac{dy}{dx} =  -  {3x}^{2}  -  y(10x + 1)

\bf\implies \:\dfrac{dy}{dx}  =  - \dfrac{ {3x}^{2}  + y(10x + 1)}{ {5x}^{2}  + x}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO LEARN

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions