Math, asked by harshita9752, 1 month ago

if x³+ax²+bx+4 is divided by x-2, the remainder is 6. if it is divided by x+1, the remainder is -3. find a and b.​

Answers

Answered by Prettyboy1231
2

Answer:

f(x)=x

3

+ax

2

+bx+6

(x−2) in a factor ⇒f(2)=0

f(2)⇒2

3

+a(2)

2

+2b+6=0

⇒8+4a+2b+b=0

⇒4a+2b+14=0

⇒2a+b+7=0 -(1)

f(x−3)=3 (Remainder)

⇒f(3)⇒3

3

+a(3)

2

+b×3+6=3

⇒27+9a+3b+b=3

⇒9a+3b+30=0

⇒3a+b+10=0 _____ (2)

From (1) & (2)

b=−2a−7 & b=−10−3a

−2a−7=−10−3a

3a−2a=−10+7

a=−3

from (3)

b=−2(a)−7=2(−3)−7

=6−7

b=−1

Answered by devanshu1234321
0

QUESTION:-

if x³+ax²+bx+4 is divided by x-2, the remainder is 6. if it is divided by x+1, the remainder is -3. find a and b.​

EXPLANATION:-

Let,

p(x)=x³+ax²+bx+4

Let's use remainder theorem here,

x-2=0

x=2

Now acc. to the remainder theorem ,

p(2)=6   (It is given that when x-2 is divided by the polynomial then the remainder is 0)

p(2)= (2)³+a(2)²+b(2)+4

p(2)=8+4a+2b+4

p(2)=12+4a+2b

p(2)=2(6+2a+b)

Since p(2)=6,

6=2(6+2a+b)

6/2=6+2a+b

3=6+2a+b

-3=2a+b  ------[EQ-1]

Now similarily we can write:-

x+1=0

x=-1

So,

p(-1)=-3  (SAME REASON)

p(-1)=(-1)³+a(-1)²+b(-1)+4

p(-1)=-1+a-b+4

p(-1)=3+a-b

p(-1)=-3

-3=3+a-b

-6=a-b --------[EQ-2]

From eq-1 and 2 we have,

-3=2a+b

-3-2a=b

Put -3-2a=b in the 2 eq

6=a-b

6=a-(-3-2a)

6=a+3+2a

6=3a+3

3=3a

a=1

So the value of a is 1 ,now put a=1 in eq-2

-3=2a+b

-3=2+b

-3-2=b

b=-5

Thus,

a=1 and b=-1

RELATED QUESTION:-

brainly.in/question/43577807

brainly.in/question/43604252

Similar questions