Math, asked by Imgaurav6472, 1 year ago

If x3 + y3 =0 and x + y is not equal to 0 then prove that Log x+y= 1/2 (Logx + Logy+ log 3)

Answers

Answered by MaheswariS
6

\textbf{Given:}

\mathsf{x^3+y^3=0\;and\;x+y\;{\neq}\;0}

\textbf{To prove:}

\mathsf{log(x+y)=\dfrac{1}{2}(log\,x+log\,y+log\,3)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{x^3+y^3=0}

\mathsf{(x+y)(x^2-xy+y^2)=0}

\mathsf{But\;x+y\;{\neq}\;0}

\mathsf{x^2-xy+y^2=0}

\mathsf{Adding\;bothsides\;by\;3xy}

\mathsf{(x^2-xy+y^2)+3xy=3xy}

\mathsf{x^2+2xy+y^2=3xy}

\mathsf{(x+y)^2=3xy}

\textsf{Taking logarithms on bothsides, we get}

\mathsf{log(x+y)^2=log(3xy)}

\textsf{Using prodiuct and power rule of logarithm,}

\mathsf{2\;log(x+y)=log\;3+log(xy)}

\implies\boxed{\mathsf{2\;log(x+y)=log\;3+log\;x+log\;y}}

\textbf{Find more:}

x62 + y^2= 25xy, then prove that 2 log(x+y)=3log3+logx+logy

https://brainly.in/question/477579

Evaluate log2 ^150 interms of x and y such that logo2 ^3=x and logo 2^5=y

https://brainly.in/question/16242429

Similar questions