If x³ + y³ + z³ = 3xyz and x + y + z = 0;
find the values of
(x + y)²/xy + ( y + z)²/yz + (z + x)²/zx
Answers
Answer:
Your question needs some correction.
Prove that,
x³ + y³ + z³ - 3xyz
= 1/2 (x + y + z) [(x - y)² + (y - z)² + (z - x)²]
Proof.
To prove this identity, we need to take help of another identity.
We know that,
x³ + y³ + z³ - 3xyz
= (x + y + z) (x² + y² + z² - xy - yz - zx) ...(i)
Now, we just need to change
(x² + y² + z² - xy - yz - zx)
as the sum of square term.
So, x² + y² + z² - xy - yz - zx
= 1/2 (2x² + 2y² + 2z² - 2xy - 2yz - 2zx)
= 1/2 (x² - 2xy + y² + y² - 2yz + z² + z² - 2zx + x²)
= 1/2 [(x - y)² + (y - z)² + (z - x)²]
From (i), we get
x³ + y³ + z³ - 3xyz
= 1/2 (x +y + z) [(x - y)² + (y - z)² + (z - x)²]
Thus, confirmed.
I hope it helps you.
Hope it helps you
Mark me brainlist
Answer:
P^3 + q^3+r^3–3pqr
=( p+q+r)(1/2((p-q)^2+(q-r)^2+(r-p)^2))
=(x+y+z)(1/2*4*((x-y)^2 +(y-z^2+(z-x)^2)
= 4(x^3+y^3+z^3–3xyz)
=4(3(1+xyz)-3xyz)
=12