Math, asked by 5678bvvvv, 10 months ago

If x3 + y3 + z3 = 6xyz and xyz = x + y + z, then the value of (x – y)2 + (y – z)2 + (z – x)2 is equal to​

Answers

Answered by isyllus
3

Given:

x^3 + y^3 + z^3 = 6xyz and

xyz = x + y + z

To find:

(x - y)^2 + (y - z)^2 + (z - x)^2 = ?

Solution:

First of all, let us expand the expression which is to be solved:

(x - y)^2 + (y - z)^2 + (z - x)^2 \\\Rightarrow x^{2} +y^{2} -2xy+y^{2} +z^{2} -2yz+z^{2} +x^{2} -2zx \ \ \ (\because (a-b)^2 = a^2+b^2-2ab)\\\Rightarrow 2(x^{2} +y^{2}+z^{2} ) -2xy-2yz-2xz\\\Rightarrow 2(x^{2} +y^{2}+z^{2}  -xy-yz-xz)

So, we have to find the value of 2(x^{2} +y^{2}+z^{2}  -xy-yz-xz)

We know the Formula:

a^3 + b^3 + c^3 - 3abc = (a + b + c )(a^2 + b^2 + c^2 -ab - ac -bc)

Here, \bold{a = x, b = y}\ and\ \bold{c = z}

\Rightarrow x^3 + y^3 + z^3 - 3xyz = (x + y + z )(x^2 + y^2 + z^2 -xy - yz -zx)

Putting the given values:

x^3 + y^3 + z^3 = 6xyz and x + y + z= xyz, the above expression becomes:

\Rightarrow 6xyz- 3xyz = xyz(x^2 + y^2 + z^2 -xy - yz -zx)\\\Rightarrow 3xyz = xyz(x^2 + y^2 + z^2 -xy - yz -zx)\\\Rightarrow (x^2 + y^2 + z^2 -xy - yz -zx) = 3

Multiplying the term with 2:

2(x^2 + y^2 + z^2 -xy - yz -zx) = 3 \times 2\\\Rightarrow 2(x^2 + y^2 + z^2 -xy - yz -zx) = 6

So, the answer is 6.

Similar questions