Math, asked by harshalpatil47262, 7 months ago

If x3y4=(x+y)n+1 and dy/dx=y/x then n=.,.​

Answers

Answered by babaraowankhade777
5

I hope it will help you 3

Attachments:
Answered by Manmohan04
6

Given,

\[\begin{array}{l}{x^3}{y^4} = {\left( {x + y} \right)^{n + 1}} -  -  -  -  - \left( 1 \right)\\\frac{{dy}}{{dx}} = \frac{y}{x} -  -  -  -  -  - \left( 2 \right)\end{array}\]

Solution,

\[{x^3}{y^4} = {\left( {x + y} \right)^{n + 1}}\]

Taking log on both side,

\[\begin{array}{l} \Rightarrow \log \left( {{x^3}{y^4}} \right) = \log {\left( {x + y} \right)^{n + 1}}\\ \Rightarrow 3\log x + 4\log y = \left( {n + 1} \right)\log \left( {x + y} \right)\end{array}\]

Differentiate with respect to x,

\[ \Rightarrow \frac{3}{x} + \frac{4}{y}\frac{{dy}}{{dx}} = \frac{{\left( {n + 1} \right)}}{{x + y}}\left( {1 + \frac{{dy}}{{dx}}} \right)\]

\[ \Rightarrow \frac{3}{x} + \frac{4}{y}\left( {\frac{y}{x}} \right) = \frac{{\left( {n + 1} \right)}}{{x\left( {1 + \frac{y}{x}} \right)}}\left( {1 + \frac{y}{x}} \right)\]

\[ \Rightarrow \frac{3}{x} + \frac{4}{x} = \frac{{\left( {n + 1} \right)}}{x}\]

\[ \Rightarrow \frac{7}{x} = \frac{{\left( {n + 1} \right)}}{x}\]

\[\begin{array}{l} \Rightarrow n + 1 = 7\\ \Rightarrow n = 6\end{array}\]

Hence the value of n is 6.

Similar questions