if x⁴+1/x⁴ =119, find x²+1/x² and x +1/x
Please answer the question with explanation
Answers
EXPLANATION.
⇒ If x⁴ + 1/x⁴ = 119.
As we know that,
⇒ (x² + 1/x²)² = x⁴ + 1/x⁴ + 2(x²)(1/x²).
⇒ (x² + 1/x²)² = x⁴ + 1/x⁴ + 2.
Put the value of (x⁴ + 1/x⁴) = 119 in equation, we get.
⇒ (x² + 1/x²)² = 119 + 2.
⇒ (x² + 1/x²)² = 121.
⇒ (x² + 1/x²) = √121.
⇒ (x² + 1/x²) = 11.
As we know that,
⇒ (x + 1/x)² = x² + 1/x² + 2(x)(1/x).
⇒ (x + 1/x)² = x² + 1/x² + 2.
Put the value of (x² + 1/x²) = 11 in equation, we get.
⇒ (x + 1/x)² = 11 + 2.
⇒ (x + 1/x)² = 13.
⇒ (x + 1/x) = √13.
Value of (1) = x² + 1/x² = 11 and (2) = x + 1/x = √13.
Answer:
Given :
- x⁴ + 1/x⁴ = 119
To find :
- value of x²+1/x² and x +1/x
Solution :
(i) We know that,
⇒ (x² + 1/x²)² = x⁴ + 1/x⁴ + 2(x²)(1/x²).
⇒ (x² + 1/x²)² = x⁴ + 1/x⁴ + 2.
Put the value of (x⁴ + 1/x⁴) = 119 in equation, we get.
⇒ (x² + 1/x²)² = 119 + 2.
⇒ (x² + 1/x²)² = 121.
⇒ (x² + 1/x²) = √121.
⇒ (x² + 1/x²) = 11.
(ii) we know that,
⇒ (x + 1/x)² = x² + 1/x² + 2(x)(1/x).
⇒ (x + 1/x)² = x² + 1/x² + 2.
Put the value of (x² + 1/x²) = 11 in equation, we get.
⇒ (x + 1/x)² = 11 + 2.
⇒ (x + 1/x)² = 13.
⇒ (x + 1/x) = √13.
- So, the value of (i) = x² + 1/x² = 11 and (ii) = x + 1/x = √13.
Learn more:-
https://brainly.in/question/37231607