if x⁴+1/x⁴ = 194 find the value of x³+1/x³
Answers
Answered by
11
Answer:
⇒ x³ + 1/x³ = 52
Step-by-step explanation:
Given: x⁴ + (1/x⁴) = 194
⇒ x⁴ + (1/x⁴) = 196 - 2
⇒ x⁴ + (1/x⁴) + 2 = 196
⇒ (x² + 1/x²)² = 196
⇒ (x² + 1/x²) = 14
It can be written as,
⇒ x² + 1/x² = 16 - 2
⇒ x² + 1/x² + 2 = 16
⇒ (x + 1/x) = 4
On cubing both sides, we get
⇒ (x + 1/x) = (4)³
⇒ x³ + 1/x³ + 3(x + 1/x) = 64
⇒ x³ + 1/x³ + 3(4) = 64
⇒ x³ + 1/x³ + 12 = 64
⇒ x³ + 1/x³ = 64 - 12
⇒ x³ + 1/x³ = 52.
Hope it helps!
siddhartharao77:
thanks
Answered by
12
Your question :
if x⁴+1/x⁴ = 194 find the value of x³+1/x³
┏─━─━─━─━∞◆∞━─━─━─━─┓
✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✭✮
┗─━─━─━─━∞◆∞━─━─━─━─┛

So, Your answer is
HOPE IT HELPS
if x⁴+1/x⁴ = 194 find the value of x³+1/x³
┏─━─━─━─━∞◆∞━─━─━─━─┓
✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✭✮
┗─━─━─━─━∞◆∞━─━─━─━─┛
So, Your answer is
HOPE IT HELPS
Similar questions
Social Sciences,
8 months ago
Social Sciences,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
English,
1 year ago